
If the charge on an electron is \[1.6\times {{10}^{-19}}\]coulombs, how many electrons should pass through a conductor in one second to constitute 1 ampere current?
Answer
571.8k+ views
Hint: We want here to determine how many electrons should be needed to move so that the current constituted is one ampere. We can use the Coulomb relationship between the charge and current to determine the value.
Complete step by step answer:
Given charge on one electron is q= \[1.6\times {{10}^{-19}}\] C.
The current is 1 A and time t= 1 s
We know q=It and from the quantization of charge q = one, where n is the number of electrons and e is the charge on one electron.
In both the equations LHS are the same, so RHS must also be the same.
It=ne
\[\begin{align}
&\Rightarrow n=\dfrac{I\times t}{e} \\
&\Rightarrow n=\dfrac{1\times 1}{1.6\times {{10}^{-19}}} \\
&\Rightarrow n=6\times {{10}^{18}} \\
\end{align}\]
So, the number of electrons needed to be passed in one second to constitute a current of one ampere is \[6\times {{10}^{18}}\].
So, \[6\times {{10}^{18}}\]electrons are the answer.
Additional Information:
Quantization of charge means that charge can assume only certain discrete values. And not any general value. The observed value of the electric charge of a particle will be integral multiples of (e), charge is also a conserved quantity, that is it cannot be created and nor be destroyed but it can be transferred from one body to another
Note: We had just used the relationship between quantization of charge and Ampere formula to arrive at our answer. . It is the negative charge which moves because the positive charge sits inside the nucleus and is not free to move.
Complete step by step answer:
Given charge on one electron is q= \[1.6\times {{10}^{-19}}\] C.
The current is 1 A and time t= 1 s
We know q=It and from the quantization of charge q = one, where n is the number of electrons and e is the charge on one electron.
In both the equations LHS are the same, so RHS must also be the same.
It=ne
\[\begin{align}
&\Rightarrow n=\dfrac{I\times t}{e} \\
&\Rightarrow n=\dfrac{1\times 1}{1.6\times {{10}^{-19}}} \\
&\Rightarrow n=6\times {{10}^{18}} \\
\end{align}\]
So, the number of electrons needed to be passed in one second to constitute a current of one ampere is \[6\times {{10}^{18}}\].
So, \[6\times {{10}^{18}}\]electrons are the answer.
Additional Information:
Quantization of charge means that charge can assume only certain discrete values. And not any general value. The observed value of the electric charge of a particle will be integral multiples of (e), charge is also a conserved quantity, that is it cannot be created and nor be destroyed but it can be transferred from one body to another
Note: We had just used the relationship between quantization of charge and Ampere formula to arrive at our answer. . It is the negative charge which moves because the positive charge sits inside the nucleus and is not free to move.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

