Answer
Verified
442.8k+ views
Hint: We start solving the problem by drawing the figure representing the given information. We then make use of the fact that the chord of contact from the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x{{x}_{1}}}{{{a}^{2}}}-\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1 $ to find the chord of contacts from points $ \left( -4,2 \right) $ and $ \left( 2,1 \right) $ . We then find the slopes of both the chords and then make use of the fact that the product of slopes of two perpendicular lines is –1. We then make the necessary calculations to get the relation between $ {{a}^{2}} $ and $ {{b}^{2}} $ . We then make use of the fact that the eccentricity of the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is defined as $ e=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}}} $ to get the required answer.
Complete step by step answer:
According to the problem, we are given that the chords of contact of tangent from the two points $ \left( -4,2 \right) $ and $ \left( 2,1 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ are at right angle. We need to find the eccentricity of the given hyperbola.
Let us draw the figure representing the given information.
We know that the chord of contact from the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x{{x}_{1}}}{{{a}^{2}}}-\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1 $ .
Now, let us find the chord of contact from the point $ \left( -4,2 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x\left( -4 \right)}{{{a}^{2}}}-\dfrac{y\left( 2 \right)}{{{b}^{2}}}=1 $ .
$ \Rightarrow \dfrac{-4{{b}^{2}}x-2{{a}^{2}}y}{{{a}^{2}}{{b}^{2}}}=1 $ .
$ \Rightarrow -4{{b}^{2}}x-2{{a}^{2}}y={{a}^{2}}{{b}^{2}} $ .
$ \Rightarrow -2{{a}^{2}}y=4{{b}^{2}}x+{{a}^{2}}{{b}^{2}} $ .
\[\Rightarrow y=\dfrac{4{{b}^{2}}}{-2{{a}^{2}}}x+\dfrac{{{a}^{2}}{{b}^{2}}}{\left( -2{{a}^{2}} \right)}\].
\[\Rightarrow y=\dfrac{-2{{b}^{2}}}{{{a}^{2}}}x-\dfrac{{{b}^{2}}}{2}\]. Comparing this with the equation of line $ y=mx+c $ , we get the slope as $ \dfrac{-2{{b}^{2}}}{{{a}^{2}}} $ ---(1).
Now, let us find the chord of contact from the point $ \left( 2,1 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x\left( 2 \right)}{{{a}^{2}}}-\dfrac{y\left( 1 \right)}{{{b}^{2}}}=1 $ .
$ \Rightarrow \dfrac{2{{b}^{2}}x-{{a}^{2}}y}{{{a}^{2}}{{b}^{2}}}=1 $ .
$ \Rightarrow 2{{b}^{2}}x-{{a}^{2}}y={{a}^{2}}{{b}^{2}} $ .
$ \Rightarrow {{a}^{2}}y=2{{b}^{2}}x+{{a}^{2}}{{b}^{2}} $ .
\[\Rightarrow y=\dfrac{2{{b}^{2}}}{{{a}^{2}}}x+\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}}\].
\[\Rightarrow y=\dfrac{2{{b}^{2}}}{{{a}^{2}}}x+{{b}^{2}}\]. Comparing this with the equation of line $ y=mx+c $ , we get the slope as $ \dfrac{2{{b}^{2}}}{{{a}^{2}}} $ ---(2).
We know that the product of slopes of two perpendicular lines is –1.
So, we get $ \left( \dfrac{-2{{b}^{2}}}{{{a}^{2}}} \right)\times \left( \dfrac{2{{b}^{2}}}{{{a}^{2}}} \right)=-1 $ .
$ \Rightarrow \dfrac{-4{{b}^{4}}}{{{a}^{4}}}=-1 $ .
$ \Rightarrow 4{{b}^{4}}={{a}^{4}} $ .
$ \Rightarrow {{a}^{2}}=2{{b}^{2}} $ ---(3).
We know that the eccentricity of the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is defined as $ e=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}}} $ .
From equation (3), we get $ e=\sqrt{\dfrac{2{{b}^{2}}+{{b}^{2}}}{2{{b}^{2}}}} $ .
$ \Rightarrow e=\sqrt{\dfrac{3{{b}^{2}}}{2{{b}^{2}}}} $ .
$ \Rightarrow e=\sqrt{\dfrac{3}{2}} $ .
We have found the eccentricity of the given hyperbola as $ \sqrt{\dfrac{3}{2}} $ .
$ \therefore $ The correct option for the given problem is (c).
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion and mistakes. We should not consider the negative root for $ {{a}^{2}} $ in equation (3), as it is positive for all real numbers. Here we are considered that the transverse axis of the parabola is the x-axis to solve the problem. Similarly, we can expect the problem to find the length of the latus-rectum of the given hyperbola.
Complete step by step answer:
According to the problem, we are given that the chords of contact of tangent from the two points $ \left( -4,2 \right) $ and $ \left( 2,1 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ are at right angle. We need to find the eccentricity of the given hyperbola.
Let us draw the figure representing the given information.
We know that the chord of contact from the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x{{x}_{1}}}{{{a}^{2}}}-\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1 $ .
Now, let us find the chord of contact from the point $ \left( -4,2 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x\left( -4 \right)}{{{a}^{2}}}-\dfrac{y\left( 2 \right)}{{{b}^{2}}}=1 $ .
$ \Rightarrow \dfrac{-4{{b}^{2}}x-2{{a}^{2}}y}{{{a}^{2}}{{b}^{2}}}=1 $ .
$ \Rightarrow -4{{b}^{2}}x-2{{a}^{2}}y={{a}^{2}}{{b}^{2}} $ .
$ \Rightarrow -2{{a}^{2}}y=4{{b}^{2}}x+{{a}^{2}}{{b}^{2}} $ .
\[\Rightarrow y=\dfrac{4{{b}^{2}}}{-2{{a}^{2}}}x+\dfrac{{{a}^{2}}{{b}^{2}}}{\left( -2{{a}^{2}} \right)}\].
\[\Rightarrow y=\dfrac{-2{{b}^{2}}}{{{a}^{2}}}x-\dfrac{{{b}^{2}}}{2}\]. Comparing this with the equation of line $ y=mx+c $ , we get the slope as $ \dfrac{-2{{b}^{2}}}{{{a}^{2}}} $ ---(1).
Now, let us find the chord of contact from the point $ \left( 2,1 \right) $ to the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is $ \dfrac{x\left( 2 \right)}{{{a}^{2}}}-\dfrac{y\left( 1 \right)}{{{b}^{2}}}=1 $ .
$ \Rightarrow \dfrac{2{{b}^{2}}x-{{a}^{2}}y}{{{a}^{2}}{{b}^{2}}}=1 $ .
$ \Rightarrow 2{{b}^{2}}x-{{a}^{2}}y={{a}^{2}}{{b}^{2}} $ .
$ \Rightarrow {{a}^{2}}y=2{{b}^{2}}x+{{a}^{2}}{{b}^{2}} $ .
\[\Rightarrow y=\dfrac{2{{b}^{2}}}{{{a}^{2}}}x+\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}}\].
\[\Rightarrow y=\dfrac{2{{b}^{2}}}{{{a}^{2}}}x+{{b}^{2}}\]. Comparing this with the equation of line $ y=mx+c $ , we get the slope as $ \dfrac{2{{b}^{2}}}{{{a}^{2}}} $ ---(2).
We know that the product of slopes of two perpendicular lines is –1.
So, we get $ \left( \dfrac{-2{{b}^{2}}}{{{a}^{2}}} \right)\times \left( \dfrac{2{{b}^{2}}}{{{a}^{2}}} \right)=-1 $ .
$ \Rightarrow \dfrac{-4{{b}^{4}}}{{{a}^{4}}}=-1 $ .
$ \Rightarrow 4{{b}^{4}}={{a}^{4}} $ .
$ \Rightarrow {{a}^{2}}=2{{b}^{2}} $ ---(3).
We know that the eccentricity of the hyperbola $ \dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $ is defined as $ e=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}}} $ .
From equation (3), we get $ e=\sqrt{\dfrac{2{{b}^{2}}+{{b}^{2}}}{2{{b}^{2}}}} $ .
$ \Rightarrow e=\sqrt{\dfrac{3{{b}^{2}}}{2{{b}^{2}}}} $ .
$ \Rightarrow e=\sqrt{\dfrac{3}{2}} $ .
We have found the eccentricity of the given hyperbola as $ \sqrt{\dfrac{3}{2}} $ .
$ \therefore $ The correct option for the given problem is (c).
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion and mistakes. We should not consider the negative root for $ {{a}^{2}} $ in equation (3), as it is positive for all real numbers. Here we are considered that the transverse axis of the parabola is the x-axis to solve the problem. Similarly, we can expect the problem to find the length of the latus-rectum of the given hyperbola.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE