If the diagonals of a quadrilateral bisect each other at right angles, then it is a
$A.$ Trapezium
$B.$ Parallelogram
$C.$ Rectangle
$D.$ Rhombus
Answer
Verified
510k+ views
Hint: In this Question first draw the diagram it will give us a clear picture what we have to prove and diagonals of this quadrilateral bisect each other at right angles (i.e. it cuts the diagonals into two equal parts) later on apply the property of Pythagoras Theorem so, use these concepts to reach the solution of the question.
Let ABCD be a quadrilateral as shown above.
And it is given that the diagonals of this quadrilateral bisect each other i.e. it is perpendicular to each other, (i.e. it cuts the diagonals into two equal parts).
$
\Rightarrow OB = OD,{\text{ \& }}OA = OC..................\left( 1 \right) \\
\angle AOB = \angle AOD = \angle BOC = \angle DOC = {90^0} \\
$
So in triangle AOB apply Pythagoras Theorem
${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
$ \Rightarrow {\left( {AB} \right)^2} = {\left( {OA} \right)^2} + {\left( {OB} \right)^2}$…………. (2)
Now from figure $AC = OA + OC,{\text{ }}BD = BO + OD$
From equation (2)
$
AC = OA + OA,{\text{ }}BD = OB + OB \\
\Rightarrow OA = \dfrac{{AC}}{2},{\text{ }}OB = \dfrac{{BD}}{2} \\
$
Now from equation (2)
$
\Rightarrow {\left( {AB} \right)^2} = {\left( {\dfrac{{AC}}{2}} \right)^2} + {\left( {\dfrac{{BD}}{2}} \right)^2} \\
\Rightarrow {\left( {AB} \right)^2} = \dfrac{{{{\left( {AC} \right)}^2}}}{4} + \dfrac{{{{\left( {BD} \right)}^2}}}{4} \\
$
$ \Rightarrow 4{\left( {AB} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2}$…………………….. (3)
Similarly,
$ \Rightarrow 4{\left( {BC} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2}$……………………… (4)
$ \Rightarrow 4{\left( {CD} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2}$………………………… (5)
$ \Rightarrow 4{\left( {DA} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2}$…………………………… (6)
Now from equation (3), (4), (5) and (6)
AB = BC = CD = DA
Therefore all the sides of a quadrilateral becomes equal and the diagonals bisect at right angle,
Which is the condition of rhombus.
So, the given quadrilateral whose diagonals bisect each other at right angles is a rhombus.
Note: In such types of questions the key concept we have to remember is that always recall the property of rhombus which is in a rhombus all sides are equal and its diagonal always bisect each other at right angles, then we prove this property for the given quadrilateral whose diagonals bisect at right angle, by using the property of Pythagoras Theorem as above and simplify, we will get the required answer.
Let ABCD be a quadrilateral as shown above.
And it is given that the diagonals of this quadrilateral bisect each other i.e. it is perpendicular to each other, (i.e. it cuts the diagonals into two equal parts).
$
\Rightarrow OB = OD,{\text{ \& }}OA = OC..................\left( 1 \right) \\
\angle AOB = \angle AOD = \angle BOC = \angle DOC = {90^0} \\
$
So in triangle AOB apply Pythagoras Theorem
${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
$ \Rightarrow {\left( {AB} \right)^2} = {\left( {OA} \right)^2} + {\left( {OB} \right)^2}$…………. (2)
Now from figure $AC = OA + OC,{\text{ }}BD = BO + OD$
From equation (2)
$
AC = OA + OA,{\text{ }}BD = OB + OB \\
\Rightarrow OA = \dfrac{{AC}}{2},{\text{ }}OB = \dfrac{{BD}}{2} \\
$
Now from equation (2)
$
\Rightarrow {\left( {AB} \right)^2} = {\left( {\dfrac{{AC}}{2}} \right)^2} + {\left( {\dfrac{{BD}}{2}} \right)^2} \\
\Rightarrow {\left( {AB} \right)^2} = \dfrac{{{{\left( {AC} \right)}^2}}}{4} + \dfrac{{{{\left( {BD} \right)}^2}}}{4} \\
$
$ \Rightarrow 4{\left( {AB} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2}$…………………….. (3)
Similarly,
$ \Rightarrow 4{\left( {BC} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2}$……………………… (4)
$ \Rightarrow 4{\left( {CD} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2}$………………………… (5)
$ \Rightarrow 4{\left( {DA} \right)^2} = {\left( {AC} \right)^2} + {\left( {BD} \right)^2}$…………………………… (6)
Now from equation (3), (4), (5) and (6)
AB = BC = CD = DA
Therefore all the sides of a quadrilateral becomes equal and the diagonals bisect at right angle,
Which is the condition of rhombus.
So, the given quadrilateral whose diagonals bisect each other at right angles is a rhombus.
Note: In such types of questions the key concept we have to remember is that always recall the property of rhombus which is in a rhombus all sides are equal and its diagonal always bisect each other at right angles, then we prove this property for the given quadrilateral whose diagonals bisect at right angle, by using the property of Pythagoras Theorem as above and simplify, we will get the required answer.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Write an application to the principal requesting five class 10 english CBSE
What are the public facilities provided by the government? Also explain each facility
What is Commercial Farming ? What are its types ? Explain them with Examples
Complete the sentence with the most appropriate word class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE