If the difference of the roots of the quadratic equation is 3 and the difference between their cubes is 189, then the quadratic equation is ${{x}^{2}}\pm 9x+18=0$. State true or false.
(a) True
(b) False
Answer
Verified
477.3k+ views
Hint: We start solving the by assuming the quadratic equation as ${{x}^{2}}+ax+b=0$. We use the ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\times \left( {{a}^{2}}+{{b}^{2}}+ab \right)$ for difference in cubes of roots and do subsequent calculations to find the value of sum of roots and product of roots. Using this sum and product, we find the quadratic equation.
Complete step-by-step solution:
Given that we have the difference of the roots and difference between cubes of roots of the quadratic equation is 3 and 189. We need to check whether the quadratic equation ${{x}^{2}}\pm 9x+18=0$ or not.
Let us assume the quadratic equation be ${{x}^{2}}+ax+b=0$, and the roots of this quadratic equation be $\alpha $ and $\beta $. We know that sum of the roots $\alpha +\beta =-a$ and product of the roots $\alpha \beta =b$.
According to the problem, we have $\alpha -\beta =3$, and ${{\alpha }^{3}}-{{\beta }^{3}}=189$ -------(1).
We know that ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\times \left( {{a}^{2}}+{{b}^{2}}+ab \right)$. We use this result for equation (1).
We have got ${{\alpha }^{3}}-{{\beta }^{3}}=189$.
We have got $\left( \alpha -\beta \right)\times \left( {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right)=189$.
We substitute the value $\alpha -\beta =3$ now.
We have got $3\times \left( {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right)=189$.
We have got $\left( {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right)=\dfrac{189}{3}$.
We have got $\left( {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right)=63$ --------(2).
We have got ${{\alpha }^{2}}+{{\beta }^{2}}-2\alpha \beta +\alpha \beta +2\alpha \beta =63$ -------(3).
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$. We use this in equation in (3).
So, we have got ${{\left( \alpha -\beta \right)}^{2}}+3\alpha \beta =63$.
We have got ${{3}^{2}}+3\alpha \beta =63$.
We have got $9+3\alpha \beta =63$.
We have got $3\alpha \beta =63-9$.
We have got $3\alpha \beta =54$.
We have got $\alpha \beta =\dfrac{54}{3}$.
We have got $\alpha \beta =18$ -------(4).
From equation (2), we get
We have got $\left( {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right)=63$.
We have got ${{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta +\alpha \beta -\alpha \beta =63$.
We have got ${{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta -\alpha \beta =63$ -------(5).
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. We use this in equation in (5).
We have got ${{\left( \alpha +\beta \right)}^{2}}-\alpha \beta =63$.
From equation (4), we use $\alpha \beta =18$.
We have got ${{\left( \alpha +\beta \right)}^{2}}-18=63$.
We have got ${{\left( \alpha +\beta \right)}^{2}}=63+18$.
We have got ${{\left( \alpha +\beta \right)}^{2}}=81$.
We have got $\alpha +\beta =\sqrt{81}$.
We have got $\alpha +\beta =\pm 9$ --------(6).
From equations (5) and (6), we have got $-a=\alpha +\beta =\pm 9$ and $b=\alpha \beta =18$.
Since $\alpha +\beta =\pm 9$, we can take the value of as $\pm 9$.
So, the quadratic equation ${{x}^{2}}\pm 9x+18=0$.
$\therefore$ The required quadratic equation is ${{x}^{2}}\pm 9x+18=0$.
The correct option for the given problem is (a) True.
Note: Here we can take the equation of the quadratic equation is $a{{x}^{2}}+bx+c=0$ and solve for the values of a, b and c by using the sum and product of the roots of the equation. But we need to solve for the value of ‘a’ again. Whenever we get to solve this type of problem, we start by assuming the appropriate quadratic equation.
Complete step-by-step solution:
Given that we have the difference of the roots and difference between cubes of roots of the quadratic equation is 3 and 189. We need to check whether the quadratic equation ${{x}^{2}}\pm 9x+18=0$ or not.
Let us assume the quadratic equation be ${{x}^{2}}+ax+b=0$, and the roots of this quadratic equation be $\alpha $ and $\beta $. We know that sum of the roots $\alpha +\beta =-a$ and product of the roots $\alpha \beta =b$.
According to the problem, we have $\alpha -\beta =3$, and ${{\alpha }^{3}}-{{\beta }^{3}}=189$ -------(1).
We know that ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\times \left( {{a}^{2}}+{{b}^{2}}+ab \right)$. We use this result for equation (1).
We have got ${{\alpha }^{3}}-{{\beta }^{3}}=189$.
We have got $\left( \alpha -\beta \right)\times \left( {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right)=189$.
We substitute the value $\alpha -\beta =3$ now.
We have got $3\times \left( {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right)=189$.
We have got $\left( {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right)=\dfrac{189}{3}$.
We have got $\left( {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right)=63$ --------(2).
We have got ${{\alpha }^{2}}+{{\beta }^{2}}-2\alpha \beta +\alpha \beta +2\alpha \beta =63$ -------(3).
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$. We use this in equation in (3).
So, we have got ${{\left( \alpha -\beta \right)}^{2}}+3\alpha \beta =63$.
We have got ${{3}^{2}}+3\alpha \beta =63$.
We have got $9+3\alpha \beta =63$.
We have got $3\alpha \beta =63-9$.
We have got $3\alpha \beta =54$.
We have got $\alpha \beta =\dfrac{54}{3}$.
We have got $\alpha \beta =18$ -------(4).
From equation (2), we get
We have got $\left( {{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta \right)=63$.
We have got ${{\alpha }^{2}}+{{\beta }^{2}}+\alpha \beta +\alpha \beta -\alpha \beta =63$.
We have got ${{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta -\alpha \beta =63$ -------(5).
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. We use this in equation in (5).
We have got ${{\left( \alpha +\beta \right)}^{2}}-\alpha \beta =63$.
From equation (4), we use $\alpha \beta =18$.
We have got ${{\left( \alpha +\beta \right)}^{2}}-18=63$.
We have got ${{\left( \alpha +\beta \right)}^{2}}=63+18$.
We have got ${{\left( \alpha +\beta \right)}^{2}}=81$.
We have got $\alpha +\beta =\sqrt{81}$.
We have got $\alpha +\beta =\pm 9$ --------(6).
From equations (5) and (6), we have got $-a=\alpha +\beta =\pm 9$ and $b=\alpha \beta =18$.
Since $\alpha +\beta =\pm 9$, we can take the value of as $\pm 9$.
So, the quadratic equation ${{x}^{2}}\pm 9x+18=0$.
$\therefore$ The required quadratic equation is ${{x}^{2}}\pm 9x+18=0$.
The correct option for the given problem is (a) True.
Note: Here we can take the equation of the quadratic equation is $a{{x}^{2}}+bx+c=0$ and solve for the values of a, b and c by using the sum and product of the roots of the equation. But we need to solve for the value of ‘a’ again. Whenever we get to solve this type of problem, we start by assuming the appropriate quadratic equation.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE