If the function f defined on $\left( \dfrac{\pi }{6},\dfrac{\pi }{3} \right)$ by \[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\] is continuous then k is equal to?
\[\begin{align}
& A.\dfrac{1}{2} \\
& B.1 \\
& C.\dfrac{1}{\sqrt{2}} \\
& D.2 \\
\end{align}\]
Answer
Verified
473.4k+ views
Hint: To solve this question, we will first understand what are continuous functions. A function $g:A\to B$ is continuous as $a\in A$ if g (a) is well defined and \[\underset{x\to a}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)\]
Now, in our question, as we are already given f (x) is continuous so, we only need to compare and equate $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ to $f\left( \dfrac{\pi }{4} \right)$ to get value of k. And while calculating $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ we will use L.Hospital Rule stated as
L.Hospital Rule is a method which is applicable where the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$ form, we just differentiate both numerator and denominator separately with respect to the given function.
Complete step-by-step answer:
We are going to define f on $\left( \dfrac{\pi }{6},\dfrac{\pi }{3} \right)$ as
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
Given that, f is continuous. So, first of all we will define when a function is called continuous in a given domain.
A function defined as $g:A\to B$ is called continuous for $a\in A$ every 'a' in domain if \[\underset{x\to a}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)\] and g (a) is defined.
Or for more elaborative definition we have
\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\text{ }g\left( x \right)\]
So, for given f (x) in our question we will check for both values ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ than
\[\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
Now, here as we are given
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
That is, for both ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ we have $f\left( x \right)=\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}$ so we can calculate just;
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\]
Then, if this holds, function is continuous.
Now, as we are given f (x) is continuous
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\text{ holds }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now $f\left( \dfrac{\pi }{4} \right)=k$ and consider \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\]
We have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\] let it be I.
We will first try to obtain answer of the question that if after applying limit value are we getting $\dfrac{0}{0}\text{ form}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$
If so then, we will apply L.Hospital Rule.
Let us define L.Hospital Rule:
L.Hospital Rule is a method which is applicable when the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after, we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$ we first differentiate both numerator and denominator separately with respect to the given function.
Here, we have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}=I\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Applying \[x\to \dfrac{\pi }{4}\Rightarrow I=\dfrac{\sqrt{2}\cos \dfrac{\pi }{4}-1}{\cot \dfrac{\pi }{4}-1}\]
As value of \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] and we have $\cot \dfrac{\pi }{4}=1$
\[\begin{align}
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)-1}{1-1} \\
& I=\dfrac{0}{0} \\
\end{align}\]
Hence, we have obtained $\dfrac{0}{0}\text{ form}$
Applying L.Hospital rule in equation (ii) we get:
\[I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\dfrac{d}{dx}\left( \sqrt{2}\cos x-1 \right)}{\dfrac{d}{dx}\left( \cot \text{ }x-1 \right)}\]
Now, value of $\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\cot x=-\text{cose}{{\text{c}}^{\text{2}}}x\text{ and }\dfrac{d}{dx}\left( 1 \right)=0$
Using this all in above, we get:
\[\begin{align}
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{-\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
\end{align}\]
Applying limit and using $\sin \dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=2$ we get:
\[\begin{align}
& I=\dfrac{\sqrt{2}\sin \dfrac{\pi }{4}}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}} \\
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)}{2} \\
& I=\dfrac{1}{2} \\
\end{align}\]
From equation (i) we have;
\[\begin{align}
& \dfrac{1}{2}=k \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}\]
Hence, the value of $k=\dfrac{1}{2}$
So, the correct answer is “Option A”.
Note: A possible confusion for students is how $\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}$ became equal to 2.
We have trigonometric identity as \[\sec \theta =\dfrac{1}{\text{cosec}\theta }\Rightarrow \sin \dfrac{\pi }{4}=\dfrac{1}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}}\]
Now, value of \[\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\Rightarrow \text{cosec}\dfrac{\pi }{4}\Rightarrow \dfrac{1}{\sqrt{2}}=\dfrac{1}{\text{cosec}\dfrac{\pi }{4}}\Rightarrow \text{cosec}\dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=\sqrt{2}-\sqrt{2}=2\]
Also, a key point to note in this question is that, we only calculated $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ and not \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
This was so because value of f (x) at ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ was same. If it is different in any other question, then we would calculate \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\text{ and }\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\] separately.
Now, in our question, as we are already given f (x) is continuous so, we only need to compare and equate $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ to $f\left( \dfrac{\pi }{4} \right)$ to get value of k. And while calculating $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ we will use L.Hospital Rule stated as
L.Hospital Rule is a method which is applicable where the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$ form, we just differentiate both numerator and denominator separately with respect to the given function.
Complete step-by-step answer:
We are going to define f on $\left( \dfrac{\pi }{6},\dfrac{\pi }{3} \right)$ as
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
Given that, f is continuous. So, first of all we will define when a function is called continuous in a given domain.
A function defined as $g:A\to B$ is called continuous for $a\in A$ every 'a' in domain if \[\underset{x\to a}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)\] and g (a) is defined.
Or for more elaborative definition we have
\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\text{ }g\left( x \right)=g\left( a \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\text{ }g\left( x \right)\]
So, for given f (x) in our question we will check for both values ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ than
\[\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
Now, here as we are given
\[f\left( x \right)=\left\{ \begin{matrix}
\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}, & x\ne \dfrac{\pi }{4} \\
k, & x\ne \dfrac{\pi }{4} \\
\end{matrix} \right.\]
That is, for both ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ we have $f\left( x \right)=\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}$ so we can calculate just;
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\]
Then, if this holds, function is continuous.
Now, as we are given f (x) is continuous
\[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=f\left( \dfrac{\pi }{4} \right)\text{ holds }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now $f\left( \dfrac{\pi }{4} \right)=k$ and consider \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\]
We have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}\] let it be I.
We will first try to obtain answer of the question that if after applying limit value are we getting $\dfrac{0}{0}\text{ form}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$
If so then, we will apply L.Hospital Rule.
Let us define L.Hospital Rule:
L.Hospital Rule is a method which is applicable when the obtained value is of type $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }$
To apply this rule after, we get $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$ we first differentiate both numerator and denominator separately with respect to the given function.
Here, we have \[\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\cos x-1}{\cot \text{ }x-1}=I\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Applying \[x\to \dfrac{\pi }{4}\Rightarrow I=\dfrac{\sqrt{2}\cos \dfrac{\pi }{4}-1}{\cot \dfrac{\pi }{4}-1}\]
As value of \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] and we have $\cot \dfrac{\pi }{4}=1$
\[\begin{align}
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)-1}{1-1} \\
& I=\dfrac{0}{0} \\
\end{align}\]
Hence, we have obtained $\dfrac{0}{0}\text{ form}$
Applying L.Hospital rule in equation (ii) we get:
\[I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\dfrac{d}{dx}\left( \sqrt{2}\cos x-1 \right)}{\dfrac{d}{dx}\left( \cot \text{ }x-1 \right)}\]
Now, value of $\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\cot x=-\text{cose}{{\text{c}}^{\text{2}}}x\text{ and }\dfrac{d}{dx}\left( 1 \right)=0$
Using this all in above, we get:
\[\begin{align}
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{-\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
& I=\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ }\dfrac{\sqrt{2}\sin x}{\text{cose}{{\text{c}}^{\text{2}}}x} \\
\end{align}\]
Applying limit and using $\sin \dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=2$ we get:
\[\begin{align}
& I=\dfrac{\sqrt{2}\sin \dfrac{\pi }{4}}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}} \\
& I=\dfrac{\sqrt{2}\left( \dfrac{1}{\sqrt{2}} \right)}{2} \\
& I=\dfrac{1}{2} \\
\end{align}\]
From equation (i) we have;
\[\begin{align}
& \dfrac{1}{2}=k \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}\]
Hence, the value of $k=\dfrac{1}{2}$
So, the correct answer is “Option A”.
Note: A possible confusion for students is how $\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}$ became equal to 2.
We have trigonometric identity as \[\sec \theta =\dfrac{1}{\text{cosec}\theta }\Rightarrow \sin \dfrac{\pi }{4}=\dfrac{1}{\text{cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}}\]
Now, value of \[\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\Rightarrow \text{cosec}\dfrac{\pi }{4}\Rightarrow \dfrac{1}{\sqrt{2}}=\dfrac{1}{\text{cosec}\dfrac{\pi }{4}}\Rightarrow \text{cosec}\dfrac{\pi }{4}=\sqrt{2}\text{ and cose}{{\text{c}}^{\text{2}}}\dfrac{\pi }{4}=\sqrt{2}-\sqrt{2}=2\]
Also, a key point to note in this question is that, we only calculated $\underset{x\to \dfrac{\pi }{4}}{\mathop{\lim }}\,\text{ f}\left( x \right)$ and not \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\]
This was so because value of f (x) at ${{\dfrac{\pi }{4}}^{+}}\text{ and }{{\dfrac{\pi }{4}}^{-}}$ was same. If it is different in any other question, then we would calculate \[\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\text{ and }\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\text{ f}\left( x \right)\] separately.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE