Answer
Verified
500.4k+ views
Hint: First find a and b by putting \[f\left( {{1}^{-}} \right)=f\left( {{1}^{+}} \right)=f\left( 1 \right)\]and \[f\left( -{{1}^{-}} \right)=f\left( -{{1}^{+}} \right)=f\left( -1 \right)\]and then check if \[{{f}^{'}}\left( {{1}^{-}} \right)={{f}^{'}}\left( {{1}^{+}} \right)\]and \[{{f}^{'}}\left( -{{1}^{-}} \right)={{f}^{'}}\left( -{{1}^{+}} \right)\]
We are given that
\[f\left( x \right)=\left\{ \begin{align}
& 2x\text{, }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x.
We have to check the differentiability of \[f\left( x \right)\]and also find the values of a and b.
As we know that, \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x\ge 0 \\
& -x,\text{ }x<0 \\
\end{align} \right.\]
Therefore, \[\left| x \right|\le 1\text{ means }-1\le x\le 1\]
And \[\left| x \right|>1\text{ means }x>1\text{ and }x<-1\]
Therefore, we get
\[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+ax+b,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+ax+b,\text{ }x>1 \\
\end{align} \right.\]
As we are given that f (x) is continuous for all \[x\in R,\text{ therefore }f\left( x \right)\]would be continuous for \[x=1\text{ and }x=-1\]as well.
For \[f\left( x \right)\]to be continuous at \[x=1\]
\[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 1 \right)....\left( i \right)\]
We are given that for \[x>1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore, \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{\left( 1 \right)}^{2}}+a\left( 1 \right)+b=1+a+b\]
Also, we are given that for \[-1\le x\le 1\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=2\left( 1 \right)=2\]
Also, \[f\left( 1 \right)=2\left( 1 \right)=2\]
By putting these values in equation (i)
We get, \[1+a+b=2\]
Or, \[a+b=2-1\]
Hence, we get \[a+b=1.....\left( ii \right)\]
Now, for \[f\left( x \right)\]to be continuous at \[x=-1\]
\[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( -1 \right)....\left( iii \right)\]
We are given that for \[x\ge -1,\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2\left( -1 \right)=-2\]
Also, \[f\left( -1 \right)=2\left( -1 \right)=-2\]
Also, we are given that for \[x<-1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore,\[\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,={{\left( -1 \right)}^{2}}+a\left( -1 \right)+b\]\[=1-a+b\]
By putting these values in equation (iii)
We get, \[-2=1-a+b=-2\]
Or, \[1-a+b=-2\]
\[a-b=3....\left( iv \right)\]
Taking equation (ii) and (iv) together
That is, \[a+b=1....\left( v \right)\]
\[a-b=3....\left( vi \right)\]
Adding these 2 equations,
We get \[\left( a+b \right)+\left( a-b \right)=4\]
\[\Rightarrow 2a=4\]
Therefore, we get \[a=2\]
By putting the values of a in equation (v), we get
\[\begin{align}
& 2+b=1 \\
& b=1-2 \\
\end{align}\]
Therefore, we get \[b=-1\]
Therefore we get, \[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+2x-1,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+2x-1,\text{ }x>1 \\
\end{align} \right.\]
Now to check the differentiability of f (x), we will differentiate f (x) with respect to x.
Since, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& 2x+2,\text{ }x<-1 \\
& 2,\text{ }-1 & 2x+2,\text{ }x>1 \\
\end{align} \right.\]
For f (x) to be differentiable at x = -1
\[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<-1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\left( -1 \right)+2=0\]
For, \[x>-1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
Since, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = -1.
Also, for f (x) to be differentiable at x = 1
\[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
\[x>1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2+2=4\]
Since, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = 1.
Therefore, a = 2, b = -1 and f is not differentiable at x = -1, 1
Hence, option (c) is correct.
Note: Students should always remember to expand the modulus function first because they often mistake taking |x|< 1 as x < 1 and |x|> 1 as x > 1 but actually |x|< 1 means -1 < x < 1 and |x| > 1 means x > 1 and x < -1
We are given that
\[f\left( x \right)=\left\{ \begin{align}
& 2x\text{, }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x.
We have to check the differentiability of \[f\left( x \right)\]and also find the values of a and b.
As we know that, \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x\ge 0 \\
& -x,\text{ }x<0 \\
\end{align} \right.\]
Therefore, \[\left| x \right|\le 1\text{ means }-1\le x\le 1\]
And \[\left| x \right|>1\text{ means }x>1\text{ and }x<-1\]
Therefore, we get
\[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+ax+b,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+ax+b,\text{ }x>1 \\
\end{align} \right.\]
As we are given that f (x) is continuous for all \[x\in R,\text{ therefore }f\left( x \right)\]would be continuous for \[x=1\text{ and }x=-1\]as well.
For \[f\left( x \right)\]to be continuous at \[x=1\]
\[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 1 \right)....\left( i \right)\]
We are given that for \[x>1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore, \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{\left( 1 \right)}^{2}}+a\left( 1 \right)+b=1+a+b\]
Also, we are given that for \[-1\le x\le 1\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=2\left( 1 \right)=2\]
Also, \[f\left( 1 \right)=2\left( 1 \right)=2\]
By putting these values in equation (i)
We get, \[1+a+b=2\]
Or, \[a+b=2-1\]
Hence, we get \[a+b=1.....\left( ii \right)\]
Now, for \[f\left( x \right)\]to be continuous at \[x=-1\]
\[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( -1 \right)....\left( iii \right)\]
We are given that for \[x\ge -1,\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2\left( -1 \right)=-2\]
Also, \[f\left( -1 \right)=2\left( -1 \right)=-2\]
Also, we are given that for \[x<-1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore,\[\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,={{\left( -1 \right)}^{2}}+a\left( -1 \right)+b\]\[=1-a+b\]
By putting these values in equation (iii)
We get, \[-2=1-a+b=-2\]
Or, \[1-a+b=-2\]
\[a-b=3....\left( iv \right)\]
Taking equation (ii) and (iv) together
That is, \[a+b=1....\left( v \right)\]
\[a-b=3....\left( vi \right)\]
Adding these 2 equations,
We get \[\left( a+b \right)+\left( a-b \right)=4\]
\[\Rightarrow 2a=4\]
Therefore, we get \[a=2\]
By putting the values of a in equation (v), we get
\[\begin{align}
& 2+b=1 \\
& b=1-2 \\
\end{align}\]
Therefore, we get \[b=-1\]
Therefore we get, \[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+2x-1,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+2x-1,\text{ }x>1 \\
\end{align} \right.\]
Now to check the differentiability of f (x), we will differentiate f (x) with respect to x.
Since, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& 2x+2,\text{ }x<-1 \\
& 2,\text{ }-1
\end{align} \right.\]
For f (x) to be differentiable at x = -1
\[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<-1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\left( -1 \right)+2=0\]
For, \[x>-1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
Since, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = -1.
Also, for f (x) to be differentiable at x = 1
\[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
\[x>1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2+2=4\]
Since, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = 1.
Therefore, a = 2, b = -1 and f is not differentiable at x = -1, 1
Hence, option (c) is correct.
Note: Students should always remember to expand the modulus function first because they often mistake taking |x|< 1 as x < 1 and |x|> 1 as x > 1 but actually |x|< 1 means -1 < x < 1 and |x| > 1 means x > 1 and x < -1
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE