Answer
Verified
498.9k+ views
Hint: First find derivative with respect to $'x'$ and then derivative with respect to $'y'$ . Multiply both to get the result.
Complete step-by-step answer:
The given expression is \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
First, we shall find \[\dfrac{dy}{dx}\].
According to the quotient rule,
\[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
By applying this rule to given function, we get
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \right]\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})\dfrac{d}{dx}(1-{{x}^{4}})-(1-{{x}^{4}})\dfrac{d}{dx}(1+{{x}^{4}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(0-4{{x}^{3}})-(1-{{x}^{4}})(0+4{{x}^{3}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(-4{{x}^{3}})-(1-{{x}^{4}})4{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
By taking ‘\[-4{{x}^{3}}\] ’ common in the numerator, we get
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{-4x{}^{3}[(1+{{x}^{4}})+(1-{{x}^{4}})]}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-4{{x}^{3}}(2)}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}..........(i)\]
Now, we will find \[\dfrac{dx}{dy}\] for a given function.
As, \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\]
By applying componendo and dividendo rule, we have
\[\dfrac{y-1}{y+1}=\dfrac{(1-{{x}^{4}})-(1+{{x}^{4}})}{(1-{{x}^{4}})+(1+{{x}^{4}})}\]
\[\Rightarrow \dfrac{y-1}{y+1}=\dfrac{1-{{x}^{4}}-1-{{x}^{4}}}{1-{{x}^{4}}+1+{{x}^{4}}}\]
Cancelling the like terms, we have
\[\begin{align}
& \Rightarrow \dfrac{y-1}{y+1}=\dfrac{-2{{x}^{4}}}{2} \\
& \Rightarrow \dfrac{y-1}{y+1}=-{{x}^{4}} \\
& \Rightarrow {{x}^{4}}=\dfrac{-(y-1)}{y+1} \\
& \Rightarrow {{x}^{4}}=\dfrac{1-y}{1+y} \\
\end{align}\]
Now, by taking derivative of with respect to y, we have
\[\dfrac{d({{x}^{4}})}{dy}=\dfrac{d}{dy}\left[ \dfrac{1-y}{1+y} \right]\]
Again, by applying the quotient rule, we have
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)\dfrac{d}{dy}(1-y)-(1-y)\dfrac{d}{dy}(1+y)}{{{(1+y)}^{2}}}\]
\[\begin{align}
& 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(0-1)-(1-y)(0+1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(-1)-(1-y)(1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-1-y-1+y}{{{(1+y)}^{2}}} \\
\end{align}\]
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-2}{{{(1+y)}^{2}}}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{(1+y)}^{2}}}.........(ii)\]
Now as we have \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
Adding ‘1’ on both sides, we get
\[\begin{align}
& 1+y=1+\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \\
& 1+y=\dfrac{(1+{{x}^{4}})+(1-{{x}^{4}})}{1+{{x}^{4}}} \\
& 1+y=\dfrac{2}{1+{{x}^{4}}}.........(iii) \\
\end{align}\]
Substituting equation (iii) in equation (ii), we get
\[\begin{align}
& \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{\left( \dfrac{2}{1+{{x}^{4}}} \right)}^{2}}} \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{2{{x}^{3}}{{(2)}^{2}}} \\
& \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}.........(iv) \\
\end{align}\]
Now multiplying equation (i) and (iv), we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}.\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}\]
Cancelling the like terms, we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Therefore, the correct answer is option (a).
Answer is option (a)
Note: In this problem we can also directly get the answer by cancelling the like terms, i.e., \[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Complete step-by-step answer:
The given expression is \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
First, we shall find \[\dfrac{dy}{dx}\].
According to the quotient rule,
\[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
By applying this rule to given function, we get
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \right]\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})\dfrac{d}{dx}(1-{{x}^{4}})-(1-{{x}^{4}})\dfrac{d}{dx}(1+{{x}^{4}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(0-4{{x}^{3}})-(1-{{x}^{4}})(0+4{{x}^{3}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(-4{{x}^{3}})-(1-{{x}^{4}})4{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
By taking ‘\[-4{{x}^{3}}\] ’ common in the numerator, we get
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{-4x{}^{3}[(1+{{x}^{4}})+(1-{{x}^{4}})]}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-4{{x}^{3}}(2)}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}..........(i)\]
Now, we will find \[\dfrac{dx}{dy}\] for a given function.
As, \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\]
By applying componendo and dividendo rule, we have
\[\dfrac{y-1}{y+1}=\dfrac{(1-{{x}^{4}})-(1+{{x}^{4}})}{(1-{{x}^{4}})+(1+{{x}^{4}})}\]
\[\Rightarrow \dfrac{y-1}{y+1}=\dfrac{1-{{x}^{4}}-1-{{x}^{4}}}{1-{{x}^{4}}+1+{{x}^{4}}}\]
Cancelling the like terms, we have
\[\begin{align}
& \Rightarrow \dfrac{y-1}{y+1}=\dfrac{-2{{x}^{4}}}{2} \\
& \Rightarrow \dfrac{y-1}{y+1}=-{{x}^{4}} \\
& \Rightarrow {{x}^{4}}=\dfrac{-(y-1)}{y+1} \\
& \Rightarrow {{x}^{4}}=\dfrac{1-y}{1+y} \\
\end{align}\]
Now, by taking derivative of with respect to y, we have
\[\dfrac{d({{x}^{4}})}{dy}=\dfrac{d}{dy}\left[ \dfrac{1-y}{1+y} \right]\]
Again, by applying the quotient rule, we have
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)\dfrac{d}{dy}(1-y)-(1-y)\dfrac{d}{dy}(1+y)}{{{(1+y)}^{2}}}\]
\[\begin{align}
& 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(0-1)-(1-y)(0+1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(-1)-(1-y)(1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-1-y-1+y}{{{(1+y)}^{2}}} \\
\end{align}\]
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-2}{{{(1+y)}^{2}}}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{(1+y)}^{2}}}.........(ii)\]
Now as we have \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
Adding ‘1’ on both sides, we get
\[\begin{align}
& 1+y=1+\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \\
& 1+y=\dfrac{(1+{{x}^{4}})+(1-{{x}^{4}})}{1+{{x}^{4}}} \\
& 1+y=\dfrac{2}{1+{{x}^{4}}}.........(iii) \\
\end{align}\]
Substituting equation (iii) in equation (ii), we get
\[\begin{align}
& \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{\left( \dfrac{2}{1+{{x}^{4}}} \right)}^{2}}} \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{2{{x}^{3}}{{(2)}^{2}}} \\
& \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}.........(iv) \\
\end{align}\]
Now multiplying equation (i) and (iv), we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}.\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}\]
Cancelling the like terms, we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Therefore, the correct answer is option (a).
Answer is option (a)
Note: In this problem we can also directly get the answer by cancelling the like terms, i.e., \[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE