Answer
Verified
449.4k+ views
Hint
For solving this question, we have to use the formula for the kinetic energy in the rotational mechanics, which relates the kinetic energy to the moment of inertia and the angular velocity of the body.
Formula Used: The formula used in this solution is
$ K = \dfrac{1}{2}I{\omega ^2} $, where $ K $ is the kinetic energy, $ I $ is the moment of inertia, and $ \omega $ is the angular velocity of a body rotating about an axis.
Complete step by step answer
We know that the kinetic energy in the rotational mechanics is given by the relation
$ K = \dfrac{1}{2}I{\omega ^2} $
According to the question, the kinetic energy is
$ K = 9J $
Also, the moment of inertia of the body is $ 2kg - {m^2} $
$ \therefore $ $ I = 2kg - {m^2} $
Substituting these in the above equation, we get
$ 9 = \dfrac{1}{2} \times 2 \times {\omega ^2} $
Or $ 9 = {\omega ^2} $
Finally, taking the square root we get
$ \omega = 3rad/\operatorname{s} $
So, the angular velocity of the body is $ 3rad/\sec $
Hence, the correct answer is option (B), $ 3 $.
Additional Information
There exists an analogy between rotational and linear motion. All the quantities in rotational mechanics are analogous to the corresponding linear quantities.
This analogy is listed below:
-Angular displacement, $ \theta $ $ \approx $ Linear displacement, $ x $
-Angular velocity, $ \omega $ $ \approx $ Linear velocity, $ v $
-Angular acceleration, $ \alpha $ $ \approx $ Linear acceleration, $ a $
-Torque, $ \tau $ $ \approx $ Force, $ F $
-Angular momentum, $ L $ $ \approx $ Linear momentum, $ p $
So, it is not required to remember the equations related to the kinematics and dynamics of the rotational motion. We just need to replace the quantities in the equations of linear motion with the analogous rotational quantities to get the corresponding equations of the rotational motion.
Note
If we do not remember the formula of the kinetic energy in the rotational mechanics, then also very easily we can derive the formula. We know that the kinetic energy in the translational motion is given by $ K = \dfrac{1}{2}m{v^2} $. Using the analogy given above, we see that the moment of inertia $ I $ is the rotational analogue of the mass $ m $, and the angular velocity $ \omega $ is analogous to the linear velocity $ v $. Replacing with these in the above formula, we get $ K = \dfrac{1}{2}I{\omega ^2} $.
For solving this question, we have to use the formula for the kinetic energy in the rotational mechanics, which relates the kinetic energy to the moment of inertia and the angular velocity of the body.
Formula Used: The formula used in this solution is
$ K = \dfrac{1}{2}I{\omega ^2} $, where $ K $ is the kinetic energy, $ I $ is the moment of inertia, and $ \omega $ is the angular velocity of a body rotating about an axis.
Complete step by step answer
We know that the kinetic energy in the rotational mechanics is given by the relation
$ K = \dfrac{1}{2}I{\omega ^2} $
According to the question, the kinetic energy is
$ K = 9J $
Also, the moment of inertia of the body is $ 2kg - {m^2} $
$ \therefore $ $ I = 2kg - {m^2} $
Substituting these in the above equation, we get
$ 9 = \dfrac{1}{2} \times 2 \times {\omega ^2} $
Or $ 9 = {\omega ^2} $
Finally, taking the square root we get
$ \omega = 3rad/\operatorname{s} $
So, the angular velocity of the body is $ 3rad/\sec $
Hence, the correct answer is option (B), $ 3 $.
Additional Information
There exists an analogy between rotational and linear motion. All the quantities in rotational mechanics are analogous to the corresponding linear quantities.
This analogy is listed below:
-Angular displacement, $ \theta $ $ \approx $ Linear displacement, $ x $
-Angular velocity, $ \omega $ $ \approx $ Linear velocity, $ v $
-Angular acceleration, $ \alpha $ $ \approx $ Linear acceleration, $ a $
-Torque, $ \tau $ $ \approx $ Force, $ F $
-Angular momentum, $ L $ $ \approx $ Linear momentum, $ p $
So, it is not required to remember the equations related to the kinematics and dynamics of the rotational motion. We just need to replace the quantities in the equations of linear motion with the analogous rotational quantities to get the corresponding equations of the rotational motion.
Note
If we do not remember the formula of the kinetic energy in the rotational mechanics, then also very easily we can derive the formula. We know that the kinetic energy in the translational motion is given by $ K = \dfrac{1}{2}m{v^2} $. Using the analogy given above, we see that the moment of inertia $ I $ is the rotational analogue of the mass $ m $, and the angular velocity $ \omega $ is analogous to the linear velocity $ v $. Replacing with these in the above formula, we get $ K = \dfrac{1}{2}I{\omega ^2} $.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE