
If the longitudinal strain in a cubical body's three times the lateral strain then the bulk modulus , young’s modulus , and rigidity are related by:
A)
B)
C)
D)
Answer
489.9k+ views
Hint: The Poisson’s ratio which is the ratio of lateral strain to the longitudinal strain is to be found. The relation between the young’s modulus, rigidity modulus, bulk modulus, and the Poisson’s ratio was to be analyzed for a new relation.
Complete step by step answer:
The strain is the ratio of change in dimension to the original dimension. A rubber band tends to be thinner when it is stretched. This is because, when the material is subjected to stretching, the compression will happen in the direction perpendicular to the force we applied. This can be measured using the Poisson’s ratio.
Suppose the lateral strain is , then the longitudinal strain is .
The ratio of lateral strain to longitudinal strain is termed as Poisson’s ratio.
Therefore the Poisson’s ratio is given as,
The relation is connected as young’s modulus , bulk modulus , rigidity modulus , and Poisson’s ratio .
Substitute for the Poisson’s ratio.
Another relation connecting the Poisson’s ratio is given as,
Substitute for the Poisson’s ratio.
Therefore, and . The correct options are, option A and B.
Note:
We have to note that the lateral strain is transverse contraction and longitudinal strain is a longitudinal extension. And both are along the direction of the force we apply. And both strains are the change in dimension to the original dimension.
Complete step by step answer:
The strain is the ratio of change in dimension to the original dimension. A rubber band tends to be thinner when it is stretched. This is because, when the material is subjected to stretching, the compression will happen in the direction perpendicular to the force we applied. This can be measured using the Poisson’s ratio.
Suppose the lateral strain is
The ratio of lateral strain to longitudinal strain is termed as Poisson’s ratio.
Therefore the Poisson’s ratio is given as,
The relation is connected as young’s modulus
Substitute for the Poisson’s ratio.
Another relation connecting the Poisson’s ratio is given as,
Substitute for the Poisson’s ratio.
Therefore,
Note:
We have to note that the lateral strain is transverse contraction and longitudinal strain is a longitudinal extension. And both are along the direction of the force we apply. And both strains are the change in dimension to the original dimension.
Latest Vedantu courses for you
Grade 10 | CBSE | SCHOOL | English
Vedantu 10 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹37,300 per year
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Who built the Grand Trunk Road AChandragupta Maurya class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
