If the longitudinal strain in a cubical body's three times the lateral strain then the bulk modulus $K$, young’s modulus $Y$, and rigidity $\eta $ are related by:
A) $K = Y$
B) $\eta = \dfrac{{3Y}}{8}$
C) $Y = \dfrac{{3\eta }}{8}$
D) $Y = \eta $
Answer
Verified
464.7k+ views
Hint: The Poisson’s ratio which is the ratio of lateral strain to the longitudinal strain is to be found. The relation between the young’s modulus, rigidity modulus, bulk modulus, and the Poisson’s ratio was to be analyzed for a new relation.
Complete step by step answer:
The strain is the ratio of change in dimension to the original dimension. A rubber band tends to be thinner when it is stretched. This is because, when the material is subjected to stretching, the compression will happen in the direction perpendicular to the force we applied. This can be measured using the Poisson’s ratio.
Suppose the lateral strain is $x$, then the longitudinal strain is $3x$.
The ratio of lateral strain to longitudinal strain is termed as Poisson’s ratio.
Therefore the Poisson’s ratio is given as,
$\sigma = \dfrac{{{\text{lateral}}\;{\text{strain}}}}{{{\text{longitudinal}}\;{\text{strain}}}} \\
\Rightarrow \sigma = \dfrac{x}{{3x}} \\
\Rightarrow \sigma = \dfrac{1}{3} \\
$
The relation is connected as young’s modulus $Y$, bulk modulus $K$, rigidity modulus $\eta $, and Poisson’s ratio $\sigma $.
$Y = 3K\left( {1 - 2\sigma } \right)$
Substitute for the Poisson’s ratio.
$\Rightarrow Y = 3K\left( {1 - 2 \times \dfrac{1}{3}} \right) $
$\Rightarrow Y = 3K \times \dfrac{1}{3} $
$\Rightarrow Y = K $
Another relation connecting the Poisson’s ratio is given as,
$Y = 2\eta \left( {1 + \sigma } \right)$
Substitute for the Poisson’s ratio.
$\Rightarrow Y = 2\eta \left( {1 + \dfrac{1}{3}} \right) \\
\Rightarrow Y = \dfrac{{8\eta }}{3} \\
\Rightarrow \eta = \dfrac{{3Y}}{8} \\
$
Therefore, $Y = K$ and $\eta = \dfrac{{3Y}}{8}$. The correct options are, option A and B.
Note:
We have to note that the lateral strain is transverse contraction and longitudinal strain is a longitudinal extension. And both are along the direction of the force we apply. And both strains are the change in dimension to the original dimension.
Complete step by step answer:
The strain is the ratio of change in dimension to the original dimension. A rubber band tends to be thinner when it is stretched. This is because, when the material is subjected to stretching, the compression will happen in the direction perpendicular to the force we applied. This can be measured using the Poisson’s ratio.
Suppose the lateral strain is $x$, then the longitudinal strain is $3x$.
The ratio of lateral strain to longitudinal strain is termed as Poisson’s ratio.
Therefore the Poisson’s ratio is given as,
$\sigma = \dfrac{{{\text{lateral}}\;{\text{strain}}}}{{{\text{longitudinal}}\;{\text{strain}}}} \\
\Rightarrow \sigma = \dfrac{x}{{3x}} \\
\Rightarrow \sigma = \dfrac{1}{3} \\
$
The relation is connected as young’s modulus $Y$, bulk modulus $K$, rigidity modulus $\eta $, and Poisson’s ratio $\sigma $.
$Y = 3K\left( {1 - 2\sigma } \right)$
Substitute for the Poisson’s ratio.
$\Rightarrow Y = 3K\left( {1 - 2 \times \dfrac{1}{3}} \right) $
$\Rightarrow Y = 3K \times \dfrac{1}{3} $
$\Rightarrow Y = K $
Another relation connecting the Poisson’s ratio is given as,
$Y = 2\eta \left( {1 + \sigma } \right)$
Substitute for the Poisson’s ratio.
$\Rightarrow Y = 2\eta \left( {1 + \dfrac{1}{3}} \right) \\
\Rightarrow Y = \dfrac{{8\eta }}{3} \\
\Rightarrow \eta = \dfrac{{3Y}}{8} \\
$
Therefore, $Y = K$ and $\eta = \dfrac{{3Y}}{8}$. The correct options are, option A and B.
Note:
We have to note that the lateral strain is transverse contraction and longitudinal strain is a longitudinal extension. And both are along the direction of the force we apply. And both strains are the change in dimension to the original dimension.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE