Answer
Verified
471k+ views
Hint: A harmonic progression (HP) is defined as a sequence of real numbers which is determined by taking the reciprocals of the arithmetic. Progression that does not contain O.In the HP, any term in the sequence is considered as the Harmonic mean of its two neighbors for example,
The sequence a, b, c, d is considered as an arithmetic progression, the harmonic progression can be written as \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\]
Complete step by step solution:
Given that a, b, c is the \[{p^{th}},{q^{th}},{r^{th}}\] terms of a H.P.
We know that H.P is the reciprocal of the arithmetic progression so,
\[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\]are the \[{p^{th}},{q^{th}},{r^{th}}\] term of A.P.
Let the A.P have \[x\] as the first term and as the common difference
\[\dfrac{1}{a} = x + (p - 1)d......(1)\]
\[\dfrac{1}{b} = \,x + \,(q - 1)d\].......(2)
\[\dfrac{1}{c} = x + (r - 1)d......(3)\]
From the question we need \[(p - q)\], so we subtract \[e{q^n}(2)\] from \[e{q^n}(1)\], so we get
\[\dfrac{1}{a} - \dfrac{1}{b} = x + (p - 1)d - (x + (q - 1)d\]
\[ = \not x + (p - 1)d - \not x(q - 1)d\]
\[ = \not x + (p - 1)d - \not x(q - 1)d\]
We took d common from the equation we have
\[\dfrac{1}{a} - \dfrac{1}{b} = (p - q)d\]
\[e{q^n}(2)\]
\[d = \dfrac{{b - a}}{{ab(p - q)}}\]
Similarly,
We subtract \[e{q^n}\] from \[e{q^n}(2)\]so we get
\[\dfrac{1}{b} - \dfrac{1}{c} = (q - r)d\]
\[d = \dfrac{{c - b}}{{cb(q - r)}}\]
\[d = \dfrac{{c - b}}{{cb(q - r)}}\]
Similarly
We subtract \[e{q^n}(1)\]from \[e{q^n}(3)\] we get
\[\dfrac{1}{c} - \dfrac{1}{a} = \,(r - p)d\]
\[d = \dfrac{{a - c}}{{ac(r - p)}}\]
Now we have 3 values of d
i.e.
\[d = \dfrac{{b - a}}{{ab(p - q)}} = \dfrac{{c - b}}{{bc(q - r)}} = \dfrac{{a - v}}{{ac(r - p)}}\]
We know that if
\[x = \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}\] then
then\[x = \dfrac{{a + c + e}}{{b + d + f}}\]
Now,\[d = \dfrac{{\not b - \not a + \not c - \not b + \not a - \not c}}{{ab(p - q) + cb(q - r) + ac(r - p)}}\]
\[d = \dfrac{O}{{ab(p - q) + cb(q - r) + ac(r - p)}}\]
We took the denominator in opposite side,
\[ab(p - q) + cb(q - r) + ac(r - p)d = O\]
\[ab(p - q) + cb(q - r) + ac(r - p) = O\]
Hence,
\[ab(p - q) + cb(q - r) + ac(r - p)\] is equal to Zero
Note:
Harmonic mean is calculated as the reciprocal of the arithmetic mean of the reciprocals
The formula to calculate the harmonic mean is given by
\[Harmonic\,Mean = \dfrac{h}{{\left[ {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} + \dfrac{1}{d}....} \right]}}\]
a, b, c, d are the values and n are the number of value present
relation between AM, GM and HM
\[ \to AM \geqslant G.M \geqslant H.M\,\] where
\[AM,GM,HM\,are\,in\,G.P\]
\[ \to AM \geqslant G.M \geqslant H.M\,\]
The sequence a, b, c, d is considered as an arithmetic progression, the harmonic progression can be written as \[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\]
Complete step by step solution:
Given that a, b, c is the \[{p^{th}},{q^{th}},{r^{th}}\] terms of a H.P.
We know that H.P is the reciprocal of the arithmetic progression so,
\[\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d}\]are the \[{p^{th}},{q^{th}},{r^{th}}\] term of A.P.
Let the A.P have \[x\] as the first term and as the common difference
\[\dfrac{1}{a} = x + (p - 1)d......(1)\]
\[\dfrac{1}{b} = \,x + \,(q - 1)d\].......(2)
\[\dfrac{1}{c} = x + (r - 1)d......(3)\]
From the question we need \[(p - q)\], so we subtract \[e{q^n}(2)\] from \[e{q^n}(1)\], so we get
\[\dfrac{1}{a} - \dfrac{1}{b} = x + (p - 1)d - (x + (q - 1)d\]
\[ = \not x + (p - 1)d - \not x(q - 1)d\]
\[ = \not x + (p - 1)d - \not x(q - 1)d\]
We took d common from the equation we have
\[\dfrac{1}{a} - \dfrac{1}{b} = (p - q)d\]
\[e{q^n}(2)\]
\[d = \dfrac{{b - a}}{{ab(p - q)}}\]
Similarly,
We subtract \[e{q^n}\] from \[e{q^n}(2)\]so we get
\[\dfrac{1}{b} - \dfrac{1}{c} = (q - r)d\]
\[d = \dfrac{{c - b}}{{cb(q - r)}}\]
\[d = \dfrac{{c - b}}{{cb(q - r)}}\]
Similarly
We subtract \[e{q^n}(1)\]from \[e{q^n}(3)\] we get
\[\dfrac{1}{c} - \dfrac{1}{a} = \,(r - p)d\]
\[d = \dfrac{{a - c}}{{ac(r - p)}}\]
Now we have 3 values of d
i.e.
\[d = \dfrac{{b - a}}{{ab(p - q)}} = \dfrac{{c - b}}{{bc(q - r)}} = \dfrac{{a - v}}{{ac(r - p)}}\]
We know that if
\[x = \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}\] then
then\[x = \dfrac{{a + c + e}}{{b + d + f}}\]
Now,\[d = \dfrac{{\not b - \not a + \not c - \not b + \not a - \not c}}{{ab(p - q) + cb(q - r) + ac(r - p)}}\]
\[d = \dfrac{O}{{ab(p - q) + cb(q - r) + ac(r - p)}}\]
We took the denominator in opposite side,
\[ab(p - q) + cb(q - r) + ac(r - p)d = O\]
\[ab(p - q) + cb(q - r) + ac(r - p) = O\]
Hence,
\[ab(p - q) + cb(q - r) + ac(r - p)\] is equal to Zero
Note:
Harmonic mean is calculated as the reciprocal of the arithmetic mean of the reciprocals
The formula to calculate the harmonic mean is given by
\[Harmonic\,Mean = \dfrac{h}{{\left[ {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} + \dfrac{1}{d}....} \right]}}\]
a, b, c, d are the values and n are the number of value present
relation between AM, GM and HM
\[ \to AM \geqslant G.M \geqslant H.M\,\] where
\[AM,GM,HM\,are\,in\,G.P\]
\[ \to AM \geqslant G.M \geqslant H.M\,\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE