Answer
Verified
450k+ views
Hint:-
- Weight of an object is the product of mass and acceleration due to gravity.
- Recall the formula for variation of acceleration due to gravity.
- The height from the sea level in the question is comparable to the radius of earth.
- Force between earth and an object \[f = \dfrac{{GMm}}{{{r^2}}}\]
Complete step by step solution:-
According to the Newton’s Law of gravitation
Force between earth and an object \[f = \dfrac{{GMm}}{{{r^2}}}\]
\[G\] is the Gravitational constant.
\[r\] is the distance from the centre of earth.
\[M\] is the mass of earth.
\[m\]is the mass of the body. \[m = 120kg\]
Here we can compare the distance from the earth,
\[R\] is the radius of earth.
Already given that,\[R = 6000km = 6 \times {10^6}m\]
So at surface \[r = R\] then,
Force \[f = \dfrac{{GMm}}{{{R^2}}}\]
This force is equivalent to the weight of the body at the surface of the earth.
Weight is given by \[f = mg\]
\[g\] is the acceleration due to gravity having a value \[g = 9.8m/{s^2}\]at earth surface.
Equate both forces \[mg = \dfrac{{GMm}}{{{R^2}}}\]
Cancels the mass \[m\]from both sides.
\[g = \dfrac{{GM}}{{{R^2}}}\] This is the acceleration due to gravity at the surface of earth.
Now we are looking to the problem the body is at a height \[h\]
Given that, \[h = 2000km = 2 \times {10^3}m\]
So the gravitational force equation changed to
\[f = \dfrac{{GMm}}{{{{(R + h)}^2}}}\]
The weight is also changed
\[f = mg'\]
\[g'\]is the new acceleration due to gravity.
Compare both equations,
\[mg' = \dfrac{{GMm}}{{{{(R + h)}^2}}}\]
Cancel \[m\]from each side.
\[g' = \dfrac{{GM}}{{{{(R + h)}^2}}}\]
We can divide \[g'\] with \[g\]
\[\dfrac{{g'}}{g} = \dfrac{{GM}}{{{{(R + h)}^2}}}/(\dfrac{{GM}}{{{R^2}}})\]
Cancel same terms
\[\dfrac{{g'}}{g} = \dfrac{1}{{{{(R + h)}^2}}}/(\dfrac{1}{{{R^2}}}) = \dfrac{{{R^2}}}{{{{(R + h)}^2}}}\]
\[g' = g\dfrac{{{R^2}}}{{{{(R + h)}^2}}}\]
Now at height \[h\],
Weight \[w = mg'\]
Substitute \[g'\]
\[w = mg' = \dfrac{{mg{R^2}}}{{{{(R + h)}^2}}}\]
Now substitute all values
\[w = \dfrac{{120 \times 9.8 \times {{(6 \times {{10}^6})}^2}}}{{{{(6 \times {{10}^6} + 2 \times {{10}^6})}^2}}} = \dfrac{{4.23 \times {{10}^{16}}}}{{6.4 \times {{10}^{13}}}} = 661.5N\]
So the answer is weight of the body at a height is \[661.5N\]
Note:-
- Weight has the same unit of force Newton \[N\] .
- Use the conversion\[1km = {10^3}m\].
- Value of \[G = 6.674 \times {10^{ - 11}}{m^3}k{g^{ - 1}}{s^{ - 2}}\]
- From sea level means the surface of earth.
- The heights from the earth are generally referred to from the sea level.
- Mass of the earth is \[M = 5.972 \times {10^{24}}kg\]
- Different planets have different acceleration due to gravity value.
\[g = 10m/{s^2}\]at earth poles.
- Weight of an object is the product of mass and acceleration due to gravity.
- Recall the formula for variation of acceleration due to gravity.
- The height from the sea level in the question is comparable to the radius of earth.
- Force between earth and an object \[f = \dfrac{{GMm}}{{{r^2}}}\]
Complete step by step solution:-
According to the Newton’s Law of gravitation
Force between earth and an object \[f = \dfrac{{GMm}}{{{r^2}}}\]
\[G\] is the Gravitational constant.
\[r\] is the distance from the centre of earth.
\[M\] is the mass of earth.
\[m\]is the mass of the body. \[m = 120kg\]
Here we can compare the distance from the earth,
\[R\] is the radius of earth.
Already given that,\[R = 6000km = 6 \times {10^6}m\]
So at surface \[r = R\] then,
Force \[f = \dfrac{{GMm}}{{{R^2}}}\]
This force is equivalent to the weight of the body at the surface of the earth.
Weight is given by \[f = mg\]
\[g\] is the acceleration due to gravity having a value \[g = 9.8m/{s^2}\]at earth surface.
Equate both forces \[mg = \dfrac{{GMm}}{{{R^2}}}\]
Cancels the mass \[m\]from both sides.
\[g = \dfrac{{GM}}{{{R^2}}}\] This is the acceleration due to gravity at the surface of earth.
Now we are looking to the problem the body is at a height \[h\]
Given that, \[h = 2000km = 2 \times {10^3}m\]
So the gravitational force equation changed to
\[f = \dfrac{{GMm}}{{{{(R + h)}^2}}}\]
The weight is also changed
\[f = mg'\]
\[g'\]is the new acceleration due to gravity.
Compare both equations,
\[mg' = \dfrac{{GMm}}{{{{(R + h)}^2}}}\]
Cancel \[m\]from each side.
\[g' = \dfrac{{GM}}{{{{(R + h)}^2}}}\]
We can divide \[g'\] with \[g\]
\[\dfrac{{g'}}{g} = \dfrac{{GM}}{{{{(R + h)}^2}}}/(\dfrac{{GM}}{{{R^2}}})\]
Cancel same terms
\[\dfrac{{g'}}{g} = \dfrac{1}{{{{(R + h)}^2}}}/(\dfrac{1}{{{R^2}}}) = \dfrac{{{R^2}}}{{{{(R + h)}^2}}}\]
\[g' = g\dfrac{{{R^2}}}{{{{(R + h)}^2}}}\]
Now at height \[h\],
Weight \[w = mg'\]
Substitute \[g'\]
\[w = mg' = \dfrac{{mg{R^2}}}{{{{(R + h)}^2}}}\]
Now substitute all values
\[w = \dfrac{{120 \times 9.8 \times {{(6 \times {{10}^6})}^2}}}{{{{(6 \times {{10}^6} + 2 \times {{10}^6})}^2}}} = \dfrac{{4.23 \times {{10}^{16}}}}{{6.4 \times {{10}^{13}}}} = 661.5N\]
So the answer is weight of the body at a height is \[661.5N\]
Note:-
- Weight has the same unit of force Newton \[N\] .
- Use the conversion\[1km = {10^3}m\].
- Value of \[G = 6.674 \times {10^{ - 11}}{m^3}k{g^{ - 1}}{s^{ - 2}}\]
- From sea level means the surface of earth.
- The heights from the earth are generally referred to from the sea level.
- Mass of the earth is \[M = 5.972 \times {10^{24}}kg\]
- Different planets have different acceleration due to gravity value.
\[g = 10m/{s^2}\]at earth poles.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE