
If the remainder on division of \[{x^3} + 2{x^2} + kx + 3\] by \[x - 3\] is 21, find the quotient and value of k. Hence, find the zeros of the cubic polynomial \[{x^3} + 2{x^2} + kx - 18\].
Answer
494.1k+ views
Hint: We will use the remainder formula to find k from the given equation and long division process to find the quotient. We will also use the division formula of polynomials to get the zeros of the polynomial.
Complete step by step answer:
Given that the remainder on division of \[{x^3} + 2{x^2} + kx + 3\] by \[x - 3\] is 21
We have the following terms:
Dividend: \[f(x) = {x^3} + 2{x^2} + kx + 3\]
Divisor: \[{\text{ }}g\left( x \right){\text{ }} = {\text{ }}x{\text{ }} - {\text{ }}3\] and remainder, \[r{\text{ }}\left( x \right){\text{ }} = {\text{ }}21\]
Using the remainder formula, we have the following expression:
\[f\left( 3 \right) = 21\]
\[
\Rightarrow {(3)^3} + 2.{(3)^2} + k.(3) + 3 = 21 \\
\Rightarrow 27 + 18 + 3k + 3 = 21 \\
\Rightarrow 3k = - 27 \\
\Rightarrow k = - 9 \\
\]
So, the polynomial is, \[p(x) = {x^3} + 2{x^2} - 9x + 3\]
Now, from the long division, we get,
\[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}({x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6){\text{ }} + {\text{ }}21\]
∴ The quotient \[ = {\text{ }}{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6\]
Clearly, \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-21 + 3 = \] \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-{\text{ }}18\] is divisible by, \[x - 3\]
\[
= {x^3} - 3{x^2} + 5{x^2} - 15x + 6x - 18 \\
= {x^2}(x - 3) + 5x(x - 3) + 6(x - 3) \\
\]
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6} \right)\;\]
On further splitting of middle terms we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2} + 3x + 2x + {\text{ }}6} \right)\]
On further simplification we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {x{\text{ }} + {\text{ }}2} \right)\left( {x{\text{ }} + {\text{ }}3} \right)\]
For, now, \[(x - 3)\]we have, \[x = 3\]
Then, for, (\[x + 2\]) we have, \[x = - 2\]
And also, for, (\[x + 3\]) we have, \[x = - 3\]
Therefore, the zeroes of \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x\; - {\text{ }}18\] are 3, -2 and -3.
Note: We have the remainder theorem as , \[f(x) = g(x).h(x) + r(x)\]. Where \[f(x)\]is the dividend and \[g(x)\]is the divisor. We also have \[r\left( x \right)\]as the reminder. This type of problems are built with the concept of long division altogether.
Complete step by step answer:
Given that the remainder on division of \[{x^3} + 2{x^2} + kx + 3\] by \[x - 3\] is 21
We have the following terms:
Dividend: \[f(x) = {x^3} + 2{x^2} + kx + 3\]
Divisor: \[{\text{ }}g\left( x \right){\text{ }} = {\text{ }}x{\text{ }} - {\text{ }}3\] and remainder, \[r{\text{ }}\left( x \right){\text{ }} = {\text{ }}21\]
Using the remainder formula, we have the following expression:
\[f\left( 3 \right) = 21\]
\[
\Rightarrow {(3)^3} + 2.{(3)^2} + k.(3) + 3 = 21 \\
\Rightarrow 27 + 18 + 3k + 3 = 21 \\
\Rightarrow 3k = - 27 \\
\Rightarrow k = - 9 \\
\]
So, the polynomial is, \[p(x) = {x^3} + 2{x^2} - 9x + 3\]
Now, from the long division, we get,
\[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}({x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6){\text{ }} + {\text{ }}21\]
∴ The quotient \[ = {\text{ }}{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6\]
Clearly, \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-21 + 3 = \] \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-{\text{ }}18\] is divisible by, \[x - 3\]
\[
= {x^3} - 3{x^2} + 5{x^2} - 15x + 6x - 18 \\
= {x^2}(x - 3) + 5x(x - 3) + 6(x - 3) \\
\]
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6} \right)\;\]
On further splitting of middle terms we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2} + 3x + 2x + {\text{ }}6} \right)\]
On further simplification we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {x{\text{ }} + {\text{ }}2} \right)\left( {x{\text{ }} + {\text{ }}3} \right)\]
For, now, \[(x - 3)\]we have, \[x = 3\]
Then, for, (\[x + 2\]) we have, \[x = - 2\]
And also, for, (\[x + 3\]) we have, \[x = - 3\]
Therefore, the zeroes of \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x\; - {\text{ }}18\] are 3, -2 and -3.
Note: We have the remainder theorem as , \[f(x) = g(x).h(x) + r(x)\]. Where \[f(x)\]is the dividend and \[g(x)\]is the divisor. We also have \[r\left( x \right)\]as the reminder. This type of problems are built with the concept of long division altogether.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

Difference Between Plant Cell and Animal Cell

Draw an outline map of India and mark the following class 9 social science CBSE

What is the difference between Atleast and Atmost in class 9 maths CBSE

Differentiate between the Western and the Eastern class 9 social science CBSE
