
If the remainder on division of \[{x^3} + 2{x^2} + kx + 3\] by \[x - 3\] is 21, find the quotient and value of k. Hence, find the zeros of the cubic polynomial \[{x^3} + 2{x^2} + kx - 18\].
Answer
581.7k+ views
Hint: We will use the remainder formula to find k from the given equation and long division process to find the quotient. We will also use the division formula of polynomials to get the zeros of the polynomial.
Complete step by step answer:
Given that the remainder on division of \[{x^3} + 2{x^2} + kx + 3\] by \[x - 3\] is 21
We have the following terms:
Dividend: \[f(x) = {x^3} + 2{x^2} + kx + 3\]
Divisor: \[{\text{ }}g\left( x \right){\text{ }} = {\text{ }}x{\text{ }} - {\text{ }}3\] and remainder, \[r{\text{ }}\left( x \right){\text{ }} = {\text{ }}21\]
Using the remainder formula, we have the following expression:
\[f\left( 3 \right) = 21\]
\[
\Rightarrow {(3)^3} + 2.{(3)^2} + k.(3) + 3 = 21 \\
\Rightarrow 27 + 18 + 3k + 3 = 21 \\
\Rightarrow 3k = - 27 \\
\Rightarrow k = - 9 \\
\]
So, the polynomial is, \[p(x) = {x^3} + 2{x^2} - 9x + 3\]
Now, from the long division, we get,
\[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}({x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6){\text{ }} + {\text{ }}21\]
∴ The quotient \[ = {\text{ }}{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6\]
Clearly, \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-21 + 3 = \] \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-{\text{ }}18\] is divisible by, \[x - 3\]
\[
= {x^3} - 3{x^2} + 5{x^2} - 15x + 6x - 18 \\
= {x^2}(x - 3) + 5x(x - 3) + 6(x - 3) \\
\]
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6} \right)\;\]
On further splitting of middle terms we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2} + 3x + 2x + {\text{ }}6} \right)\]
On further simplification we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {x{\text{ }} + {\text{ }}2} \right)\left( {x{\text{ }} + {\text{ }}3} \right)\]
For, now, \[(x - 3)\]we have, \[x = 3\]
Then, for, (\[x + 2\]) we have, \[x = - 2\]
And also, for, (\[x + 3\]) we have, \[x = - 3\]
Therefore, the zeroes of \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x\; - {\text{ }}18\] are 3, -2 and -3.
Note: We have the remainder theorem as , \[f(x) = g(x).h(x) + r(x)\]. Where \[f(x)\]is the dividend and \[g(x)\]is the divisor. We also have \[r\left( x \right)\]as the reminder. This type of problems are built with the concept of long division altogether.
Complete step by step answer:
Given that the remainder on division of \[{x^3} + 2{x^2} + kx + 3\] by \[x - 3\] is 21
We have the following terms:
Dividend: \[f(x) = {x^3} + 2{x^2} + kx + 3\]
Divisor: \[{\text{ }}g\left( x \right){\text{ }} = {\text{ }}x{\text{ }} - {\text{ }}3\] and remainder, \[r{\text{ }}\left( x \right){\text{ }} = {\text{ }}21\]
Using the remainder formula, we have the following expression:
\[f\left( 3 \right) = 21\]
\[
\Rightarrow {(3)^3} + 2.{(3)^2} + k.(3) + 3 = 21 \\
\Rightarrow 27 + 18 + 3k + 3 = 21 \\
\Rightarrow 3k = - 27 \\
\Rightarrow k = - 9 \\
\]
So, the polynomial is, \[p(x) = {x^3} + 2{x^2} - 9x + 3\]
Now, from the long division, we get,
\[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}({x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6){\text{ }} + {\text{ }}21\]
∴ The quotient \[ = {\text{ }}{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6\]
Clearly, \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-21 + 3 = \] \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x{\text{ }}-{\text{ }}18\] is divisible by, \[x - 3\]
\[
= {x^3} - 3{x^2} + 5{x^2} - 15x + 6x - 18 \\
= {x^2}(x - 3) + 5x(x - 3) + 6(x - 3) \\
\]
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2}\; + {\text{ }}5x{\text{ }} + {\text{ }}6} \right)\;\]
On further splitting of middle terms we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {{x^2} + 3x + 2x + {\text{ }}6} \right)\]
On further simplification we get,
\[ = {\text{ }}\left( {x{\text{ }} - {\text{ }}3{\text{ }}} \right){\text{ }}\left( {x{\text{ }} + {\text{ }}2} \right)\left( {x{\text{ }} + {\text{ }}3} \right)\]
For, now, \[(x - 3)\]we have, \[x = 3\]
Then, for, (\[x + 2\]) we have, \[x = - 2\]
And also, for, (\[x + 3\]) we have, \[x = - 3\]
Therefore, the zeroes of \[{x^3}\; + {\text{ }}2{x^2}\; - {\text{ }}9x\; - {\text{ }}18\] are 3, -2 and -3.
Note: We have the remainder theorem as , \[f(x) = g(x).h(x) + r(x)\]. Where \[f(x)\]is the dividend and \[g(x)\]is the divisor. We also have \[r\left( x \right)\]as the reminder. This type of problems are built with the concept of long division altogether.
Recently Updated Pages
Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE


