
If the roots of $a{x^2} + bx + c = 0$ are in the ratio $m:n$ then
A. $mn{a^2} = \left( {m + n} \right){c^2}$
B. $mn{b^2} = \left( {m + n} \right)ac$
C. $mn{b^2} = {\left( {m + n} \right)^2}ac$
D. None of these
Answer
493.5k+ views
Hint: First find the sum of roots and product of the roots of the given equation. Assume the roots to be my and ny. Then put the value of y from the sum equation to the product of the roots and adjust the equation.
Complete step by step answer:
Given the roots of $a{x^2} + bx + c = 0$ are in the ratio $m:n$ then
Let the roots be ‘my’ and ‘ny’.
Now we know that sum of roots=$ - \dfrac{{{\text{coefficient of x}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
And product of roots=$\dfrac{{{\text{constant}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
On putting the values in the formula we get,
$ \Rightarrow my + ny = \dfrac{{ - b}}{a}$
$ \Rightarrow y\left( {m + n} \right) = \dfrac{{ - b}}{a}$ --- (i)
And $my \times ny = \dfrac{c}{a}$
$ \Rightarrow $ $mn{y^2} = \dfrac{c}{a}$ --- (ii)
From eq. (i) we get,
$ \Rightarrow y = \dfrac{{ - b}}{{a\left( {m + n} \right)}}$
On putting the value of y from eq. (i) to (ii) we get,
$ \Rightarrow mn{\left( {\dfrac{{ - b}}{{a\left( {m + n} \right)}}} \right)^2} = \dfrac{c}{a}$
On simplifying we get,
$ \Rightarrow mn\dfrac{{{{\left( { - b} \right)}^2}}}{{{a^2}{{\left( {m + n} \right)}^2}}} = \dfrac{c}{a}$
On transferring ${a^2}{\left( {m + n} \right)^2}$ on the right side we get,
$ \Rightarrow mn \times {b^2} = \dfrac{{c{a^2}{{\left( {m + n} \right)}^2}}}{a}$
On cancelling a from denominator and numerator we get,
$ \Rightarrow mn{b^2} = ac{\left( {m + n} \right)^2}$
Hence the correct answer is ‘C’.
Note:: This method can also be solved using the following method-
Assume the roots of the given equation to be $\alpha $ and $\beta $ then according to question,
$ \Rightarrow \dfrac{\alpha }{\beta } = \dfrac{m}{n}$ -- (I)
Using Componendo, we get
$ \Rightarrow \dfrac{{\alpha + \beta }}{\beta } = \dfrac{{m + n}}{n}$ $ \Rightarrow \dfrac{{\alpha + \beta }}{{m + n}} = \dfrac{\beta }{n}$ -- (II)
We can also write eq.(I) as $\dfrac{\alpha }{m} = \dfrac{\beta }{n}$
On multiplying$\dfrac{\beta }{n}$ both sides we get $\dfrac{{\alpha \beta }}{{mn}} = {\left( {\dfrac{\beta }{n}} \right)^2}$
$ \Rightarrow \sqrt {\dfrac{{\alpha \beta }}{{mn}}} = \dfrac{\beta }{n}$ --- (III)
On equating eq. (II) and (III) we get,
$ \Rightarrow \dfrac{{\alpha + \beta }}{{m + n}} = \sqrt {\dfrac{{\alpha \beta }}{{mn}}} $
On solving we get,
$ \Rightarrow \dfrac{{{{\left( {\alpha + \beta } \right)}^2}}}{{{{\left( {m + n} \right)}^2}}} = \dfrac{{\alpha \beta }}{{mn}}$
On cross multiplication we get,
$ \Rightarrow {\left( {m + n} \right)^2}\alpha \beta = {\left( {\alpha + \beta } \right)^2}mn$
Now we already know the value of the sum of roots and the product of roots, so putting the values in the equation we get,
$ \Rightarrow {\left( {m + n} \right)^2}\dfrac{c}{a} = {\left( {\dfrac{{ - b}}{a}} \right)^2}mn$
On simplifying we get,
$ \Rightarrow mn{b^2} = ac{\left( {m + n} \right)^2}$
Hence, the correct answer is obtained.
Complete step by step answer:
Given the roots of $a{x^2} + bx + c = 0$ are in the ratio $m:n$ then
Let the roots be ‘my’ and ‘ny’.
Now we know that sum of roots=$ - \dfrac{{{\text{coefficient of x}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
And product of roots=$\dfrac{{{\text{constant}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
On putting the values in the formula we get,
$ \Rightarrow my + ny = \dfrac{{ - b}}{a}$
$ \Rightarrow y\left( {m + n} \right) = \dfrac{{ - b}}{a}$ --- (i)
And $my \times ny = \dfrac{c}{a}$
$ \Rightarrow $ $mn{y^2} = \dfrac{c}{a}$ --- (ii)
From eq. (i) we get,
$ \Rightarrow y = \dfrac{{ - b}}{{a\left( {m + n} \right)}}$
On putting the value of y from eq. (i) to (ii) we get,
$ \Rightarrow mn{\left( {\dfrac{{ - b}}{{a\left( {m + n} \right)}}} \right)^2} = \dfrac{c}{a}$
On simplifying we get,
$ \Rightarrow mn\dfrac{{{{\left( { - b} \right)}^2}}}{{{a^2}{{\left( {m + n} \right)}^2}}} = \dfrac{c}{a}$
On transferring ${a^2}{\left( {m + n} \right)^2}$ on the right side we get,
$ \Rightarrow mn \times {b^2} = \dfrac{{c{a^2}{{\left( {m + n} \right)}^2}}}{a}$
On cancelling a from denominator and numerator we get,
$ \Rightarrow mn{b^2} = ac{\left( {m + n} \right)^2}$
Hence the correct answer is ‘C’.
Note:: This method can also be solved using the following method-
Assume the roots of the given equation to be $\alpha $ and $\beta $ then according to question,
$ \Rightarrow \dfrac{\alpha }{\beta } = \dfrac{m}{n}$ -- (I)
Using Componendo, we get
$ \Rightarrow \dfrac{{\alpha + \beta }}{\beta } = \dfrac{{m + n}}{n}$ $ \Rightarrow \dfrac{{\alpha + \beta }}{{m + n}} = \dfrac{\beta }{n}$ -- (II)
We can also write eq.(I) as $\dfrac{\alpha }{m} = \dfrac{\beta }{n}$
On multiplying$\dfrac{\beta }{n}$ both sides we get $\dfrac{{\alpha \beta }}{{mn}} = {\left( {\dfrac{\beta }{n}} \right)^2}$
$ \Rightarrow \sqrt {\dfrac{{\alpha \beta }}{{mn}}} = \dfrac{\beta }{n}$ --- (III)
On equating eq. (II) and (III) we get,
$ \Rightarrow \dfrac{{\alpha + \beta }}{{m + n}} = \sqrt {\dfrac{{\alpha \beta }}{{mn}}} $
On solving we get,
$ \Rightarrow \dfrac{{{{\left( {\alpha + \beta } \right)}^2}}}{{{{\left( {m + n} \right)}^2}}} = \dfrac{{\alpha \beta }}{{mn}}$
On cross multiplication we get,
$ \Rightarrow {\left( {m + n} \right)^2}\alpha \beta = {\left( {\alpha + \beta } \right)^2}mn$
Now we already know the value of the sum of roots and the product of roots, so putting the values in the equation we get,
$ \Rightarrow {\left( {m + n} \right)^2}\dfrac{c}{a} = {\left( {\dfrac{{ - b}}{a}} \right)^2}mn$
On simplifying we get,
$ \Rightarrow mn{b^2} = ac{\left( {m + n} \right)^2}$
Hence, the correct answer is obtained.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Explain the system of Dual Government class 8 social science CBSE

What is Kayal in Geography class 8 social science CBSE

Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Advantages and disadvantages of science

Write the smallest number divisible by both 306 and class 8 maths CBSE
