Answer
Verified
499.5k+ views
Hint: If we have any quadratic $A{{x}^{2}}+Bx+C=0$ with roots ${{x}_{1}}\And {{x}_{2}}$ , then we have
${{x}_{1}}+{{x}_{2}}=\dfrac{-B}{A}\And {{x}_{1}}{{x}_{2}}=\dfrac{C}{A}$
Use the given relation to solve the given equation.
We have given that $\left( \alpha ,\beta \right)$ are roots of the quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Another information given here is
$3{{b}^{2}}=16ac...........\left( 1 \right)$
Now, $\left( \alpha ,\beta \right)$ are roots of quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Hence, relation between roots and coefficients of any quadratic is given as
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{-}\left( \text{coefficient of }x \right)}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
Therefore, we have quadratic equation as;
$a{{x}^{2}}+bx+c=0\text{ }$
Sum of roots $=\alpha +\beta =\dfrac{-b}{a}...................\left( 2 \right)$
Product of roots $=\alpha \beta =\dfrac{c}{a}.....................\left( 3 \right)$
Now, from equation (1), we have
$3{{b}^{2}}=16ac$
Putting value of ‘b’ from equation (2) i.e. $-a\left( \alpha +\beta \right)$ in the above equation, we get;
$3{{a}^{2}}{{\left( \alpha +\beta \right)}^{2}}=16ac$
Transferring ${{a}^{2}}$ to another side, we get;
$3{{\left( \alpha +\beta \right)}^{2}}=\dfrac{16ac}{{{a}^{2}}}=16\dfrac{c}{a}$
From equation (3), we can replace $'\dfrac{c}{a}'$ by $\alpha \text{ }\beta $ from above equation;
$3{{\left( \alpha +\beta \right)}^{2}}=16\alpha \beta $
We have identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab,$ applying it with the above equation we get;
\[\begin{align}
& 3\left( {{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \right)=16\alpha \beta \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}+6\alpha \beta -16\alpha \beta =0 \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0 \\
\end{align}\]
Dividing whole equation by ‘${{\alpha }^{2}}$’, we get;
$3+3{{\left( \dfrac{\beta }{\alpha } \right)}^{2}}-10\left( \dfrac{\beta }{\alpha } \right)=0$
Let $\dfrac{\beta }{\alpha }='t'$ we can write above equation as;
$3{{t}^{2}}-10t+3=0$ …………………(4)
Now, splitting the middle term to get summation of 10 and product ‘9’, we get;
$\begin{align}
& 3{{t}^{2}}-9t-t+3=0 \\
& 3t\left( t-3 \right)-1\left( t-3 \right)=0 \\
& \left( t-3 \right)\left( t-\dfrac{1}{3} \right)=0 \\
& t=\dfrac{1}{3},t=3 \\
\end{align}$
As, we have suppose $t\ \text{as}\ \dfrac{\beta }{\alpha }$ , Hence we get;
$\begin{align}
& \dfrac{\beta }{\alpha }=\dfrac{1}{3}\ \And \dfrac{\beta }{\alpha }=3 \\
& or \\
& 3\beta =\alpha ,\beta =3\alpha \\
\end{align}$
Therefore, Option (C) is the correct answer.
Note: One can go wrong while factoring $3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0$. To minimize the confusion, divide the whole equation by ${{\alpha }^{2}}\ \And \ {{\beta }^{2}}$.
We can factorize $3{{\alpha }^{2}}-10\alpha \beta +3{{\beta }^{2}}=0$ as splitting middle term to $-9\alpha \beta \ and\ -\alpha \beta $ as
$\begin{align}
& 3{{\alpha }^{2}}-9\alpha \beta -\alpha \beta +3{{\beta }^{2}}=0 \\
& 3\alpha \left( \alpha -3\beta \right)-\beta \left( \alpha -3\beta \right)=0 \\
& \left( \alpha -3\beta \right)\left( 3\alpha -\beta \right)=0 \\
\end{align}$
Hence, we get $\alpha =3\beta \ or\ \beta =3\alpha $.
One can go wrong while writing the sum of roots and product of roots. He/she may write
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
& \text{Product of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
\end{align}$
Which is wrong. Hence, we need to apply the above relations very carefully. Correct relation is given as;
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
${{x}_{1}}+{{x}_{2}}=\dfrac{-B}{A}\And {{x}_{1}}{{x}_{2}}=\dfrac{C}{A}$
Use the given relation to solve the given equation.
We have given that $\left( \alpha ,\beta \right)$ are roots of the quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Another information given here is
$3{{b}^{2}}=16ac...........\left( 1 \right)$
Now, $\left( \alpha ,\beta \right)$ are roots of quadratic $a{{x}^{2}}+bx+c=0\text{ }$
Hence, relation between roots and coefficients of any quadratic is given as
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{-}\left( \text{coefficient of }x \right)}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
Therefore, we have quadratic equation as;
$a{{x}^{2}}+bx+c=0\text{ }$
Sum of roots $=\alpha +\beta =\dfrac{-b}{a}...................\left( 2 \right)$
Product of roots $=\alpha \beta =\dfrac{c}{a}.....................\left( 3 \right)$
Now, from equation (1), we have
$3{{b}^{2}}=16ac$
Putting value of ‘b’ from equation (2) i.e. $-a\left( \alpha +\beta \right)$ in the above equation, we get;
$3{{a}^{2}}{{\left( \alpha +\beta \right)}^{2}}=16ac$
Transferring ${{a}^{2}}$ to another side, we get;
$3{{\left( \alpha +\beta \right)}^{2}}=\dfrac{16ac}{{{a}^{2}}}=16\dfrac{c}{a}$
From equation (3), we can replace $'\dfrac{c}{a}'$ by $\alpha \text{ }\beta $ from above equation;
$3{{\left( \alpha +\beta \right)}^{2}}=16\alpha \beta $
We have identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab,$ applying it with the above equation we get;
\[\begin{align}
& 3\left( {{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \right)=16\alpha \beta \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}+6\alpha \beta -16\alpha \beta =0 \\
& 3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0 \\
\end{align}\]
Dividing whole equation by ‘${{\alpha }^{2}}$’, we get;
$3+3{{\left( \dfrac{\beta }{\alpha } \right)}^{2}}-10\left( \dfrac{\beta }{\alpha } \right)=0$
Let $\dfrac{\beta }{\alpha }='t'$ we can write above equation as;
$3{{t}^{2}}-10t+3=0$ …………………(4)
Now, splitting the middle term to get summation of 10 and product ‘9’, we get;
$\begin{align}
& 3{{t}^{2}}-9t-t+3=0 \\
& 3t\left( t-3 \right)-1\left( t-3 \right)=0 \\
& \left( t-3 \right)\left( t-\dfrac{1}{3} \right)=0 \\
& t=\dfrac{1}{3},t=3 \\
\end{align}$
As, we have suppose $t\ \text{as}\ \dfrac{\beta }{\alpha }$ , Hence we get;
$\begin{align}
& \dfrac{\beta }{\alpha }=\dfrac{1}{3}\ \And \dfrac{\beta }{\alpha }=3 \\
& or \\
& 3\beta =\alpha ,\beta =3\alpha \\
\end{align}$
Therefore, Option (C) is the correct answer.
Note: One can go wrong while factoring $3{{\alpha }^{2}}+3{{\beta }^{2}}-10\alpha \beta =0$. To minimize the confusion, divide the whole equation by ${{\alpha }^{2}}\ \And \ {{\beta }^{2}}$.
We can factorize $3{{\alpha }^{2}}-10\alpha \beta +3{{\beta }^{2}}=0$ as splitting middle term to $-9\alpha \beta \ and\ -\alpha \beta $ as
$\begin{align}
& 3{{\alpha }^{2}}-9\alpha \beta -\alpha \beta +3{{\beta }^{2}}=0 \\
& 3\alpha \left( \alpha -3\beta \right)-\beta \left( \alpha -3\beta \right)=0 \\
& \left( \alpha -3\beta \right)\left( 3\alpha -\beta \right)=0 \\
\end{align}$
Hence, we get $\alpha =3\beta \ or\ \beta =3\alpha $.
One can go wrong while writing the sum of roots and product of roots. He/she may write
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
& \text{Product of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
\end{align}$
Which is wrong. Hence, we need to apply the above relations very carefully. Correct relation is given as;
$\begin{align}
& \text{ sum of roots = }\dfrac{\text{- coefficient of }x}{\text{coefficient of }{{x}^{\text{2}}}} \\
& \text{Product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{x}^{2}}} \\
\end{align}$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE