Answer
Verified
463.2k+ views
Hint: Draw a hexagon ABCDEF, the diagonals AD, BE and CF divide the hexagon into 6 equal equilateral triangles. Find the area of the equilateral triangle. Using the formula root \[\dfrac{\sqrt{3}}{4}{{a}^{2}}\], where a is the side of the triangle. Thus the area of the hexagon is equal to six times the area of the equilateral triangle.
Complete step-by-step answer:
We have been given the side of the regular hexagon as 6cm. Let us consider ABCDEF as a regular hexagon. Let ‘O’ be the center of the regular hexagon.
Now let us join the diagonals of the hexagons AD, BE and CF.
By the properties of the regular hexagon, the three diagonals divide the hexagon, into 6 congruent equilateral triangles.
Now their equilateral triangle will have the side as 6cm.
We know that the area of the equilateral triangle is given by the formula,
\[A=\dfrac{\sqrt{3}}{4}{{a}^{2}}\]
Here a = side = 6cm
\[\therefore \] Area of one equilateral triangle = \[\dfrac{\sqrt{3}}{4}{{\left( 6 \right)}^{2}}=\dfrac{\sqrt{3}}{4}\times 6\times 6=3\times 3\times \sqrt{3}=9\sqrt{3}\]
Thus we got the area of one equilateral triangle = \[9\sqrt{3}\].
\[\therefore \] Area of the regular hexagon = 6 \[\times \] area of one equilateral triangle.
\[\therefore \] Area of the regular hexagon = \[6\times 9\sqrt{3}=54\sqrt{3}c{{m}^{2}}\]
Thus we got the area of the regular hexagon as \[54\sqrt{3}c{{m}^{2}}\].
\[\therefore \] Option (d) is the correct answer.
Note: We can also find the area of the hexagon using the formula, \[\dfrac{3\sqrt{3}}{2}{{a}^{2}}\].
\[\therefore \] Area of hexagon = \[\dfrac{3\sqrt{3}}{2}\times {{6}^{2}}=\dfrac{3\sqrt{3}}{2}\times 6\times 6=3\sqrt{3}\times 3\times 6=54\sqrt{3}c{{m}^{2}}\].
If you can’t remember the formula, you can solve it by splitting it into equilateral triangles.
Complete step-by-step answer:
We have been given the side of the regular hexagon as 6cm. Let us consider ABCDEF as a regular hexagon. Let ‘O’ be the center of the regular hexagon.
Now let us join the diagonals of the hexagons AD, BE and CF.
By the properties of the regular hexagon, the three diagonals divide the hexagon, into 6 congruent equilateral triangles.
Now their equilateral triangle will have the side as 6cm.
We know that the area of the equilateral triangle is given by the formula,
\[A=\dfrac{\sqrt{3}}{4}{{a}^{2}}\]
Here a = side = 6cm
\[\therefore \] Area of one equilateral triangle = \[\dfrac{\sqrt{3}}{4}{{\left( 6 \right)}^{2}}=\dfrac{\sqrt{3}}{4}\times 6\times 6=3\times 3\times \sqrt{3}=9\sqrt{3}\]
Thus we got the area of one equilateral triangle = \[9\sqrt{3}\].
\[\therefore \] Area of the regular hexagon = 6 \[\times \] area of one equilateral triangle.
\[\therefore \] Area of the regular hexagon = \[6\times 9\sqrt{3}=54\sqrt{3}c{{m}^{2}}\]
Thus we got the area of the regular hexagon as \[54\sqrt{3}c{{m}^{2}}\].
\[\therefore \] Option (d) is the correct answer.
Note: We can also find the area of the hexagon using the formula, \[\dfrac{3\sqrt{3}}{2}{{a}^{2}}\].
\[\therefore \] Area of hexagon = \[\dfrac{3\sqrt{3}}{2}\times {{6}^{2}}=\dfrac{3\sqrt{3}}{2}\times 6\times 6=3\sqrt{3}\times 3\times 6=54\sqrt{3}c{{m}^{2}}\].
If you can’t remember the formula, you can solve it by splitting it into equilateral triangles.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Draw a labelled sketch of the human eye class 12 physics CBSE