Answer
Verified
468.9k+ views
Hint: We are given the sum of m terms denoted by \[2{{m}^{2}}+3m,\] so we will put m = 1 and will get the sum of the first term which is nothing but the first term only. Then, we put m = 2 and get the sum of the first two terms of the AP. Finally, we will subtract the first term from the sum of the two terms to get the second term.
Complete step-by-step answer:
We are given that the sum of the first m term of the AP is given as \[2{{m}^{2}}+3m.\] We are asked to find the second term to do so we need the common difference and the first term.
Now, \[2{{m}^{2}}+3m\] denotes the sum of the first m terms. When we put m = 1, it means we get the sum of the first term only. So,
\[{{S}_{1}}=2\times {{1}^{2}}+3\times 1\]
\[\Rightarrow {{S}_{1}}=2+3\]
\[\Rightarrow {{S}_{1}}=5\]
So, the sum of the first term is 5. This means we have got \[{{a}_{1}}=5.\left[ {{a}_{1}}=\text{first term} \right]\]
Now, when we put m = 2 in \[2{{m}^{2}}+3m,\] we will get the sum of the first two terms of the AP. Therefore, we get,
\[{{S}_{2}}=2{{m}^{2}}+3m\]
\[\Rightarrow {{S}_{2}}=2\times {{2}^{2}}+3\times 2\]
Solving further, we get,
\[\Rightarrow {{S}_{2}}=2\times 4+6\]
\[\Rightarrow {{S}_{2}}=14\]
So, we get the sum of the first two terms as 14.
We will take \[{{a}_{1}}\] as the first term and \[{{a}_{2}}\] as the second term. Then we have,
\[{{a}_{1}}+{{a}_{2}}={{S}_{2}}\]
As \[{{S}_{2}}=14,{{a}_{1}}=5,\] we get,
\[\Rightarrow {{a}_{2}}=14-5\]
\[\Rightarrow {{a}_{2}}=9\]
Hence, we get that the second term of the AP is 9.
So, the required answer is 9.
Note: We can also find the second term by first finding ‘a’ (first term) and ‘d’ (common difference).
When we put m = 1, we get,
\[{{S}_{1}}=2{{\times }^{2}}+3\times 1\]
\[\Rightarrow {{S}_{1}}=5\]
So, our first term is 5. Therefore, a is 5.
Then in an AP, the second term is denoted by d. When we put m = 2, we get,
\[{{S}_{2}}=2\times {{2}^{2}}+3\times 2\]
\[\Rightarrow {{S}_{2}}=2\times 4+6\]
\[\Rightarrow {{S}_{2}}=14\]
\[{{S}_{2}}=\text{Sum of first term + second term}\]
\[\Rightarrow a+\left( a+d \right)=14\]
\[\Rightarrow 5+5+d=14\]
\[\Rightarrow 10+d=14\]
\[\Rightarrow d=14-10\]
\[\Rightarrow d=4\]
Now, we have a = 5 and d = 4. So, we can easily find the second term,
\[{{a}_{2}}=a+d\]
\[\Rightarrow {{a}_{2}}=5+4\]
\[\Rightarrow {{a}_{2}}=9\]
So, the second term is 9.
Complete step-by-step answer:
We are given that the sum of the first m term of the AP is given as \[2{{m}^{2}}+3m.\] We are asked to find the second term to do so we need the common difference and the first term.
Now, \[2{{m}^{2}}+3m\] denotes the sum of the first m terms. When we put m = 1, it means we get the sum of the first term only. So,
\[{{S}_{1}}=2\times {{1}^{2}}+3\times 1\]
\[\Rightarrow {{S}_{1}}=2+3\]
\[\Rightarrow {{S}_{1}}=5\]
So, the sum of the first term is 5. This means we have got \[{{a}_{1}}=5.\left[ {{a}_{1}}=\text{first term} \right]\]
Now, when we put m = 2 in \[2{{m}^{2}}+3m,\] we will get the sum of the first two terms of the AP. Therefore, we get,
\[{{S}_{2}}=2{{m}^{2}}+3m\]
\[\Rightarrow {{S}_{2}}=2\times {{2}^{2}}+3\times 2\]
Solving further, we get,
\[\Rightarrow {{S}_{2}}=2\times 4+6\]
\[\Rightarrow {{S}_{2}}=14\]
So, we get the sum of the first two terms as 14.
We will take \[{{a}_{1}}\] as the first term and \[{{a}_{2}}\] as the second term. Then we have,
\[{{a}_{1}}+{{a}_{2}}={{S}_{2}}\]
As \[{{S}_{2}}=14,{{a}_{1}}=5,\] we get,
\[\Rightarrow {{a}_{2}}=14-5\]
\[\Rightarrow {{a}_{2}}=9\]
Hence, we get that the second term of the AP is 9.
So, the required answer is 9.
Note: We can also find the second term by first finding ‘a’ (first term) and ‘d’ (common difference).
When we put m = 1, we get,
\[{{S}_{1}}=2{{\times }^{2}}+3\times 1\]
\[\Rightarrow {{S}_{1}}=5\]
So, our first term is 5. Therefore, a is 5.
Then in an AP, the second term is denoted by d. When we put m = 2, we get,
\[{{S}_{2}}=2\times {{2}^{2}}+3\times 2\]
\[\Rightarrow {{S}_{2}}=2\times 4+6\]
\[\Rightarrow {{S}_{2}}=14\]
\[{{S}_{2}}=\text{Sum of first term + second term}\]
\[\Rightarrow a+\left( a+d \right)=14\]
\[\Rightarrow 5+5+d=14\]
\[\Rightarrow 10+d=14\]
\[\Rightarrow d=14-10\]
\[\Rightarrow d=4\]
Now, we have a = 5 and d = 4. So, we can easily find the second term,
\[{{a}_{2}}=a+d\]
\[\Rightarrow {{a}_{2}}=5+4\]
\[\Rightarrow {{a}_{2}}=9\]
So, the second term is 9.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE