
If the terms \[1,{{\log }_{3}}\sqrt{{{3}^{1-x}}+2},{{\log }_{3}}({{4.3}^{x}}-1)\] are in AP. Then, x is equal to
(a) \[1 - {\log _3}4\]
(b) \[{\log _3}4\]
(c) \[{\log _3}7\]
(d) \[{\log _7}4\]
Answer
551.1k+ views
Hint: To deal with the problems regarding logarithm, we should try to make the bases of the log just the same. To make that we will use \[{{\log }_{3}}3=1\] so that we can use the rules of logarithm to go ahead with the problem. In such a way the solution of any logarithmic function can be reached easily.
Complete step by step solution:
We are given, \[1,{{\log }_{3}}\sqrt{{{3}^{1-x}}+2},{{\log }_{3}}({{4.3}^{x}}-1)\] are in arithmetic progression.
If three numbers a,b and c are in A.P then, 2b = a + c,
So, we get now,
\[2{\log _3}\sqrt {{3^{1 - x}} + 2} = 1 + {\log _3}({4.3^x} - 1)\]
\[\Rightarrow 2{\log _3}\sqrt {{3^{1 - x}} + 2} = {\log _3}3 + {\log _3}({4.3^x} - 1)\]
as, \[{\log _3}3\] = 1
\[\Rightarrow 2{\log _3}{({3^{1 - x}} + 2)^{\dfrac{1}{2}}} = {\log _3}3 + {\log _3}({4.3^x} - 1)\]
\[\Rightarrow {\log _3}{({3^{1 - x}} + 2)^{\dfrac{1}{2}.2}} = {\log _3}3({4.3^x} - 1)\]
As, [log a + log b = log ab]
\[\Rightarrow {\log _3}({3^{1 - x}} + 2) = {\log _3}({12.3^x} - 3)\]
\[\Rightarrow {3^{1 - x}} + 2 = {12.3^x} - 3\]
As, log a = log b implies a = b
Now, let,
\[{3^x} = t\]
\[\Rightarrow \dfrac{3}{t} + 2 = 12t - 3\]
Now, we will take LCM. Therefore, we get
\[\begin{array}{l}
\Rightarrow \dfrac{{3 + 2t}}{t} = 12t - 3\\
\Rightarrow 3 + 2t = 12{t^2} - 3t\\
\Rightarrow 12{t^2} - 5t - 3 = 0
\end{array}\]
And we know that 5t = 9t - 4t. Therefore, we get
\[\Rightarrow 12{t^2} - 9t + 4t - 3 = 0\]
\[\Rightarrow 3t(4t - 3) + 1(4t - 3) = 0\]
\[\Rightarrow (3t + 1)(4t - 3) = 0\]
\[\Rightarrow t = - \dfrac{1}{3},\dfrac{3}{4}\]
Now, putting the value,
\[\Rightarrow {3^x} = \dfrac{3}{4}\]
As, \[{3^x}\] can’t be negative, we can’t choose our value to be negative. That is why only positive value has to be chosen.
\[\Rightarrow x = {\log _3}\dfrac{3}{4}\]
\[\Rightarrow x = {\log _3}3 - {\log _3}4\]
\[\Rightarrow x = 1 - {\log _3}4\]
Hence, the correct option is, (a) \[1 - {\log _3}4\]
Note: To solve the quadratic equation we can use the formula of Sridharacharya also. The formula is said to be, when, $a{{x}^{2}}+bx+c=0$ we get, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .On the other hand, if we choose our value of t to be negative, then as per the rules of integration the value of x would be undefined. Analyzing the problem, in this way we will find our desired solution of x with the form of logarithmic function.
Complete step by step solution:
We are given, \[1,{{\log }_{3}}\sqrt{{{3}^{1-x}}+2},{{\log }_{3}}({{4.3}^{x}}-1)\] are in arithmetic progression.
If three numbers a,b and c are in A.P then, 2b = a + c,
So, we get now,
\[2{\log _3}\sqrt {{3^{1 - x}} + 2} = 1 + {\log _3}({4.3^x} - 1)\]
\[\Rightarrow 2{\log _3}\sqrt {{3^{1 - x}} + 2} = {\log _3}3 + {\log _3}({4.3^x} - 1)\]
as, \[{\log _3}3\] = 1
\[\Rightarrow 2{\log _3}{({3^{1 - x}} + 2)^{\dfrac{1}{2}}} = {\log _3}3 + {\log _3}({4.3^x} - 1)\]
\[\Rightarrow {\log _3}{({3^{1 - x}} + 2)^{\dfrac{1}{2}.2}} = {\log _3}3({4.3^x} - 1)\]
As, [log a + log b = log ab]
\[\Rightarrow {\log _3}({3^{1 - x}} + 2) = {\log _3}({12.3^x} - 3)\]
\[\Rightarrow {3^{1 - x}} + 2 = {12.3^x} - 3\]
As, log a = log b implies a = b
Now, let,
\[{3^x} = t\]
\[\Rightarrow \dfrac{3}{t} + 2 = 12t - 3\]
Now, we will take LCM. Therefore, we get
\[\begin{array}{l}
\Rightarrow \dfrac{{3 + 2t}}{t} = 12t - 3\\
\Rightarrow 3 + 2t = 12{t^2} - 3t\\
\Rightarrow 12{t^2} - 5t - 3 = 0
\end{array}\]
And we know that 5t = 9t - 4t. Therefore, we get
\[\Rightarrow 12{t^2} - 9t + 4t - 3 = 0\]
\[\Rightarrow 3t(4t - 3) + 1(4t - 3) = 0\]
\[\Rightarrow (3t + 1)(4t - 3) = 0\]
\[\Rightarrow t = - \dfrac{1}{3},\dfrac{3}{4}\]
Now, putting the value,
\[\Rightarrow {3^x} = \dfrac{3}{4}\]
As, \[{3^x}\] can’t be negative, we can’t choose our value to be negative. That is why only positive value has to be chosen.
\[\Rightarrow x = {\log _3}\dfrac{3}{4}\]
\[\Rightarrow x = {\log _3}3 - {\log _3}4\]
\[\Rightarrow x = 1 - {\log _3}4\]
Hence, the correct option is, (a) \[1 - {\log _3}4\]
Note: To solve the quadratic equation we can use the formula of Sridharacharya also. The formula is said to be, when, $a{{x}^{2}}+bx+c=0$ we get, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .On the other hand, if we choose our value of t to be negative, then as per the rules of integration the value of x would be undefined. Analyzing the problem, in this way we will find our desired solution of x with the form of logarithmic function.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

