Answer
Verified
499.5k+ views
Hint: In this question apply the concept that in equilateral triangle all the sides of equilateral triangle is same and later on apply the distance formula between two points, so use these concepts to reach the solution of the question.
The given vertices of the equilateral triangle is (0, 1), (0, -1) and (x, 0)
Now as we know all that in an equilateral triangle all the sides are equal.
So, let the vertices of the triangle be A, B, C.
Therefore,
A = (0, 1), B = (0, -1), C = (x, 0)
So, according to condition of equilateral triangle we have,
AB = BC = CA
So first calculate the distance AB according to distance formula between two points which is given as
$d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Now let's consider
A = (0, 1) $ \equiv \left( {{x_1},{y_1}} \right)$, B = (0, -1) $ \equiv \left( {{x_2},{y_2}} \right)$, C = (x, 0) $ \equiv \left( {{x_3},{y_3}} \right)$
Therefore AB = $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} = \sqrt {{{\left( {0 - 0} \right)}^2} + {{\left( { - 1 - 1} \right)}^2}} = \sqrt {{{\left( { - 2} \right)}^2}} = 2$
Therefore BC = $\sqrt {{{\left( {{x_3} - {x_2}} \right)}^2} + {{\left( {{y_3} - {y_2}} \right)}^2}} = \sqrt {{{\left( {x - 0} \right)}^2} + {{\left( {0 - \left( { - 1} \right)} \right)}^2}} = \sqrt {{x^2} + {{\left( 1 \right)}^2}} = \sqrt {{x^2} + 1} $
Therefore CA = $\sqrt {{{\left( {{x_3} - {x_1}} \right)}^2} + {{\left( {{y_3} - {y_1}} \right)}^2}} = \sqrt {{{\left( {x - 0} \right)}^2} + {{\left( {0 - 1} \right)}^2}} = \sqrt {{x^2} + {{\left( { - 1} \right)}^2}} = \sqrt {{x^2} + 1} $
Now as we know all the sides are equal therefore
AB = BC = CA
$ \Rightarrow 2 = \sqrt {{x^2} + 1} $
Now squaring both sides we have,
$
\Rightarrow {2^2} = {x^2} + 1 \\
\Rightarrow 4 - 1 = {x^2} \\
\Rightarrow {x^2} = 3 \\
$
Now take square root we have,
$ \Rightarrow x = \pm \sqrt 3 $
$ \Rightarrow x = \sqrt 3 , - \sqrt 3 $
So, the required value of x is $\sqrt 3 , - \sqrt 3 $.
Hence, option (b) is correct.
Note: In such types of questions the key concept we have to remember is that always recall the distance formula between two points which is stated above then we all know that all the sides of the equilateral triangle is equal, so calculate the distances and equate them as above and simplify, we will get the required value of x, which is the required answer.
The given vertices of the equilateral triangle is (0, 1), (0, -1) and (x, 0)
Now as we know all that in an equilateral triangle all the sides are equal.
So, let the vertices of the triangle be A, B, C.
Therefore,
A = (0, 1), B = (0, -1), C = (x, 0)
So, according to condition of equilateral triangle we have,
AB = BC = CA
So first calculate the distance AB according to distance formula between two points which is given as
$d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Now let's consider
A = (0, 1) $ \equiv \left( {{x_1},{y_1}} \right)$, B = (0, -1) $ \equiv \left( {{x_2},{y_2}} \right)$, C = (x, 0) $ \equiv \left( {{x_3},{y_3}} \right)$
Therefore AB = $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} = \sqrt {{{\left( {0 - 0} \right)}^2} + {{\left( { - 1 - 1} \right)}^2}} = \sqrt {{{\left( { - 2} \right)}^2}} = 2$
Therefore BC = $\sqrt {{{\left( {{x_3} - {x_2}} \right)}^2} + {{\left( {{y_3} - {y_2}} \right)}^2}} = \sqrt {{{\left( {x - 0} \right)}^2} + {{\left( {0 - \left( { - 1} \right)} \right)}^2}} = \sqrt {{x^2} + {{\left( 1 \right)}^2}} = \sqrt {{x^2} + 1} $
Therefore CA = $\sqrt {{{\left( {{x_3} - {x_1}} \right)}^2} + {{\left( {{y_3} - {y_1}} \right)}^2}} = \sqrt {{{\left( {x - 0} \right)}^2} + {{\left( {0 - 1} \right)}^2}} = \sqrt {{x^2} + {{\left( { - 1} \right)}^2}} = \sqrt {{x^2} + 1} $
Now as we know all the sides are equal therefore
AB = BC = CA
$ \Rightarrow 2 = \sqrt {{x^2} + 1} $
Now squaring both sides we have,
$
\Rightarrow {2^2} = {x^2} + 1 \\
\Rightarrow 4 - 1 = {x^2} \\
\Rightarrow {x^2} = 3 \\
$
Now take square root we have,
$ \Rightarrow x = \pm \sqrt 3 $
$ \Rightarrow x = \sqrt 3 , - \sqrt 3 $
So, the required value of x is $\sqrt 3 , - \sqrt 3 $.
Hence, option (b) is correct.
Note: In such types of questions the key concept we have to remember is that always recall the distance formula between two points which is stated above then we all know that all the sides of the equilateral triangle is equal, so calculate the distances and equate them as above and simplify, we will get the required value of x, which is the required answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE