Answer
Verified
499.5k+ views
Hint: Use the trigonometric identity related to tan that is $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ . Use the given condition to find the value of $\theta +\phi $ and find out the required relation.
As per the given conditions, we have
${{\tan }^{3}}\theta =\tan \phi ..........(i)$
$\tan 2\theta =2\tan \alpha ........(ii)$
Now consider the expression,
$\tan (\theta +\phi )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta +\tan \phi }{1-\tan \theta \tan \phi }$
Now substituting the value from equation (i), we get
$\tan (\theta +\phi )=\dfrac{\tan \theta +{{\tan }^{3}}\theta }{1-\tan \theta {{\tan }^{3}}\theta }$
Taking out the common term from the numerator, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{1-{{\tan }^{4}}\theta }$
Now we know, ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$, using this identity the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{\left( 1-{{\tan }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right)}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}$
Multiplying and dividing by ‘2’, we get
$\tan (\theta +\phi )=\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}\times \dfrac{1}{2}$
Now we know, $\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}=\tan 2\theta $, substituting this in above expression, we get
$\tan (\theta +\phi )=\tan 2\theta \times \dfrac{1}{2}$
Substituting value from equation (ii), we get
$\tan (\theta +\phi )=2\tan \alpha \times \dfrac{1}{2}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\tan \alpha ..........(iii)$
Now consider the expression,
$\tan (n\pi +\alpha )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (n\pi +\alpha )=\dfrac{\tan n\pi +\tan \alpha }{1-\tan n\pi \tan \alpha }$
Now we know, $\tan n\pi =0$, substituting this value in above expression, we get
$\tan (n\pi +\alpha )=\dfrac{0+\tan \alpha }{1-(0)\tan \alpha }=\tan \alpha $
Substituting this value in equation (iii), we get
$\begin{align}
& \tan (\theta +\phi )=\tan \left( n\pi +\alpha \right) \\
& \Rightarrow \theta +\phi =n\pi +\alpha \\
\end{align}$
Hence proved
Note: Sometimes students get confused after the step $\tan (\theta +\phi )=\tan \alpha $ if they don’t remember $\tan n\pi =0$.
So it’s very important to remember important identities.
One more approach is to find the value of $\tan (\theta +\phi )$ in terms of $\theta $. Next find the value of $\tan \left( n\pi +\alpha \right)$ in terms of $\theta $ and then equate.
As per the given conditions, we have
${{\tan }^{3}}\theta =\tan \phi ..........(i)$
$\tan 2\theta =2\tan \alpha ........(ii)$
Now consider the expression,
$\tan (\theta +\phi )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta +\tan \phi }{1-\tan \theta \tan \phi }$
Now substituting the value from equation (i), we get
$\tan (\theta +\phi )=\dfrac{\tan \theta +{{\tan }^{3}}\theta }{1-\tan \theta {{\tan }^{3}}\theta }$
Taking out the common term from the numerator, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{1-{{\tan }^{4}}\theta }$
Now we know, ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$, using this identity the above expression can be written as,
$\tan (\theta +\phi )=\dfrac{\tan \theta (1+{{\tan }^{2}}\theta )}{\left( 1-{{\tan }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right)}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\dfrac{\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}$
Multiplying and dividing by ‘2’, we get
$\tan (\theta +\phi )=\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}\times \dfrac{1}{2}$
Now we know, $\dfrac{2\tan \theta }{\left( 1-{{\tan }^{2}}\theta \right)}=\tan 2\theta $, substituting this in above expression, we get
$\tan (\theta +\phi )=\tan 2\theta \times \dfrac{1}{2}$
Substituting value from equation (ii), we get
$\tan (\theta +\phi )=2\tan \alpha \times \dfrac{1}{2}$
Cancelling the like terms, we get
$\tan (\theta +\phi )=\tan \alpha ..........(iii)$
Now consider the expression,
$\tan (n\pi +\alpha )$
Now we know, as per the trigonometric identity, $\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$, so the above expression can be written as,
$\tan (n\pi +\alpha )=\dfrac{\tan n\pi +\tan \alpha }{1-\tan n\pi \tan \alpha }$
Now we know, $\tan n\pi =0$, substituting this value in above expression, we get
$\tan (n\pi +\alpha )=\dfrac{0+\tan \alpha }{1-(0)\tan \alpha }=\tan \alpha $
Substituting this value in equation (iii), we get
$\begin{align}
& \tan (\theta +\phi )=\tan \left( n\pi +\alpha \right) \\
& \Rightarrow \theta +\phi =n\pi +\alpha \\
\end{align}$
Hence proved
Note: Sometimes students get confused after the step $\tan (\theta +\phi )=\tan \alpha $ if they don’t remember $\tan n\pi =0$.
So it’s very important to remember important identities.
One more approach is to find the value of $\tan (\theta +\phi )$ in terms of $\theta $. Next find the value of $\tan \left( n\pi +\alpha \right)$ in terms of $\theta $ and then equate.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE