
If the value of $^n{C_6}{:^{n - 3}}{C_3} = 33:4,$ find the value of n.
Answer
620.4k+ views
Hint: Let's make use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\] \[\] and solve this.
Complete step-by-step answer:
By making use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\]
We can write \[{n_{{C_6} = \dfrac{{n!}}{{(n - 6)!6!}}}}\]
\[n - {3_{{C_3} = \dfrac{{n!}}{{(n - 6)!3!}}}}\]
So ,now we can write the ratio $\dfrac{{^n{C_6}}}{{^{n - 3}{C_3}}} = \dfrac{{33}}{4}$
Lets substitute the values of $^n{C_6}$ and $^n{C_3}$
So, we get \[\dfrac{{_{\dfrac{{n!}}{{(n - 6)!6!}}}}}{{_{\dfrac{{(n - 3)!}}{{(n - 6)!3!}}}}} = \dfrac{{33}}{4}\]
Here, we will make use of the formula $n! = n(n - 1)!$ and write
$n! = n(n - 1)(n - 2)(n - 3)!$ in the numerator .
So, from this we can cancel out $(n - 3)!,(n - 6)!$ in the numerator and denominator
$\dfrac{{n(n - 1)(n - 2)}}{{6!}} \times 3! = \dfrac{{33}}{4}$
On shifting $6!$ and $3!$ to the right hand side, we get
$n(n - 1)(n - 2) = 11 \times 3 \times 5 \times 2 \times 3 = 11 \times 10 \times 9$
Therefore n=11.
Note: While expressing $n! = n(n - 1)!$ express it upto the term which is present in the denominator so that the terms in the numerator and denominator will get cancelled out and it would be easy to solve.
Complete step-by-step answer:
By making use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\]
We can write \[{n_{{C_6} = \dfrac{{n!}}{{(n - 6)!6!}}}}\]
\[n - {3_{{C_3} = \dfrac{{n!}}{{(n - 6)!3!}}}}\]
So ,now we can write the ratio $\dfrac{{^n{C_6}}}{{^{n - 3}{C_3}}} = \dfrac{{33}}{4}$
Lets substitute the values of $^n{C_6}$ and $^n{C_3}$
So, we get \[\dfrac{{_{\dfrac{{n!}}{{(n - 6)!6!}}}}}{{_{\dfrac{{(n - 3)!}}{{(n - 6)!3!}}}}} = \dfrac{{33}}{4}\]
Here, we will make use of the formula $n! = n(n - 1)!$ and write
$n! = n(n - 1)(n - 2)(n - 3)!$ in the numerator .
So, from this we can cancel out $(n - 3)!,(n - 6)!$ in the numerator and denominator
$\dfrac{{n(n - 1)(n - 2)}}{{6!}} \times 3! = \dfrac{{33}}{4}$
On shifting $6!$ and $3!$ to the right hand side, we get
$n(n - 1)(n - 2) = 11 \times 3 \times 5 \times 2 \times 3 = 11 \times 10 \times 9$
Therefore n=11.
Note: While expressing $n! = n(n - 1)!$ express it upto the term which is present in the denominator so that the terms in the numerator and denominator will get cancelled out and it would be easy to solve.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

