Answer
Verified
472.5k+ views
Hint: First, we will draw the figure of a tetrahedron. Then we should know the formula of volume of tetrahedron formed by coterminous edges is given as $\dfrac{1}{6}\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . Using this, we will get value of $\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . Then for finding value of $\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a}$ , formula to be used is given as ${{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}$ . Thus, on substituting the values and solving we will get the answer. The general formula of volume of parallelepiped having coterminous edges $\vec{a},\vec{b},\vec{c}$ is given as $\left| \left( \vec{a}\times \vec{b} \right)\cdot \vec{c} \right|$ .
Complete step-by-step answer:
Here, we will draw a tetrahedron figure.
We should know that volume of Tetrahedron formed by coterminous edges $\vec{a},\vec{b},\vec{c}$ is given as $\dfrac{1}{6}\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ .
We are also given that this volume is equal to 2. So, we can write it as
$\dfrac{1}{6}\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]=2$
On solving this, we get as
$\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]=2\times 6=12$ ………………….(1)
Now, we have to find value of parallelepiped formed by coterminous edges $\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a}$ . So, we can write this as by replacing $\vec{a}$ as $\vec{a}\times \vec{b}$ , $\vec{b}$ as $\vec{b}\times \vec{c}$ , $\vec{c}$ as $\vec{c}\times \vec{a}$ in the general formula $\left| \left( \vec{a}\times \vec{b} \right)\cdot \vec{c} \right|$ which is basically written as $\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . So, after replacing the values we will get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & \vec{c}\times \vec{a} \\
\end{matrix} \right]$
So, we can write it as $\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)$ which is known as quadrupole product of four product.
We have formula i.e. $\left( \vec{a}\times \vec{b} \right)\times \left( \vec{c}\times \vec{d} \right)=\left[ \begin{matrix}
a & b & d \\
\end{matrix} \right]c-\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]d$ . So, on applying this we get as
$\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)=\left( \vec{a}\times \vec{b} \right)\cdot \left( \left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]c-\left[ \begin{matrix}
b & c & c \\
\end{matrix} \right]a \right)$
We also know that if two out of three vectors are the same then that is equal to zero. So, we can write it as
$\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)=\left( \vec{a}\times \vec{b} \right)\cdot \left( \left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]c \right)=\left( \left( \vec{a}\times \vec{b} \right)\cdot c \right)\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]$
So, we get as $=\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]$ . We know the cumulative rule of box i.e. given as $\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]=\left[ \begin{matrix}
c & a & b \\
\end{matrix} \right]$
So, we will get as
${{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}$ ………………..(2)
So, we will directly substitute the value in above equation, and we get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & {\vec{c}} \\
\end{matrix}\times \vec{a} \right]={{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}={{\left[ 12 \right]}^{2}}$
Thus, on solving we get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & {\vec{c}} \\
\end{matrix}\times \vec{a} \right]=144$
Hence, option (b) is the correct answer.
Note: Students sometimes do not read question carefully and end up finding the value of $\left[ \begin{matrix}
\vec{a}+\vec{b} & \vec{b}+\vec{c} & {\vec{c}} \\
\end{matrix}+\vec{a} \right]$ . For finding this formula is almost similar as compare to finding value of $\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & \vec{c}\times \vec{a} \\
\end{matrix} \right]$ i.e. $2\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . By placing value in the formula answer will be 24 which is wrong. So, do not solve it in a hurry and please read the question carefully and then attempt it.
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . Using this, we will get value of $\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . Then for finding value of $\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a}$ , formula to be used is given as ${{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}$ . Thus, on substituting the values and solving we will get the answer. The general formula of volume of parallelepiped having coterminous edges $\vec{a},\vec{b},\vec{c}$ is given as $\left| \left( \vec{a}\times \vec{b} \right)\cdot \vec{c} \right|$ .
Complete step-by-step answer:
Here, we will draw a tetrahedron figure.
We should know that volume of Tetrahedron formed by coterminous edges $\vec{a},\vec{b},\vec{c}$ is given as $\dfrac{1}{6}\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ .
We are also given that this volume is equal to 2. So, we can write it as
$\dfrac{1}{6}\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]=2$
On solving this, we get as
$\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]=2\times 6=12$ ………………….(1)
Now, we have to find value of parallelepiped formed by coterminous edges $\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a}$ . So, we can write this as by replacing $\vec{a}$ as $\vec{a}\times \vec{b}$ , $\vec{b}$ as $\vec{b}\times \vec{c}$ , $\vec{c}$ as $\vec{c}\times \vec{a}$ in the general formula $\left| \left( \vec{a}\times \vec{b} \right)\cdot \vec{c} \right|$ which is basically written as $\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . So, after replacing the values we will get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & \vec{c}\times \vec{a} \\
\end{matrix} \right]$
So, we can write it as $\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)$ which is known as quadrupole product of four product.
We have formula i.e. $\left( \vec{a}\times \vec{b} \right)\times \left( \vec{c}\times \vec{d} \right)=\left[ \begin{matrix}
a & b & d \\
\end{matrix} \right]c-\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]d$ . So, on applying this we get as
$\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)=\left( \vec{a}\times \vec{b} \right)\cdot \left( \left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]c-\left[ \begin{matrix}
b & c & c \\
\end{matrix} \right]a \right)$
We also know that if two out of three vectors are the same then that is equal to zero. So, we can write it as
$\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)=\left( \vec{a}\times \vec{b} \right)\cdot \left( \left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]c \right)=\left( \left( \vec{a}\times \vec{b} \right)\cdot c \right)\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]$
So, we get as $=\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]$ . We know the cumulative rule of box i.e. given as $\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]=\left[ \begin{matrix}
c & a & b \\
\end{matrix} \right]$
So, we will get as
${{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}$ ………………..(2)
So, we will directly substitute the value in above equation, and we get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & {\vec{c}} \\
\end{matrix}\times \vec{a} \right]={{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}={{\left[ 12 \right]}^{2}}$
Thus, on solving we get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & {\vec{c}} \\
\end{matrix}\times \vec{a} \right]=144$
Hence, option (b) is the correct answer.
Note: Students sometimes do not read question carefully and end up finding the value of $\left[ \begin{matrix}
\vec{a}+\vec{b} & \vec{b}+\vec{c} & {\vec{c}} \\
\end{matrix}+\vec{a} \right]$ . For finding this formula is almost similar as compare to finding value of $\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & \vec{c}\times \vec{a} \\
\end{matrix} \right]$ i.e. $2\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . By placing value in the formula answer will be 24 which is wrong. So, do not solve it in a hurry and please read the question carefully and then attempt it.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE