Answer
Verified
450.9k+ views
Hint: We use the given equality between sine and cosine of an angle. Divide both sides of the equality with such a trigonometric function so we can make out the value of angle using tangent of the angle. Find the angle and substitute it in the equation whose value we have to find. Check whether the angle is acute or not. Use a table of trigonometric values to substitute values in the equation.
* Acute angle: Any angle having measure less than \[{90^ \circ }\] is called an acute angle.
* \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
Complete step-by-step solution:
We are given \[\sin \theta = \cos \theta \]....................… (1)
We divide both sides of equation (1) by \[\cos \theta \]
\[ \Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\cos \theta }}{{\cos \theta }}\]
Cancel same terms in RHS of the equation and use \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]in LHS of the equation
\[ \Rightarrow \tan \theta = 1\]........................… (2)
Now we know from the table of trigonometric functions that\[\tan {45^ \circ } = 1\]. Substitute the value of 1 in equation (2)
\[ \Rightarrow \tan \theta = \tan {45^ \circ }\]
Take inverse tangent function on both sides of the equation
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}\left( {\tan {{45}^ \circ }} \right)\]
Since we know \[{f^{ - 1}}(f(x)) = x\]
\[ \Rightarrow \theta = {45^ \circ }\].........................… (3)
Since, \[\theta = {45^ \circ } < {90^ \circ }\], so the angle is an acute angle.
Now substitute the value from equation (3) in the equation \[2{\tan ^2}\theta + {\sin ^2}\theta - 1\]
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2{\tan ^2}({45^ \circ }) + {\sin ^2}({45^ \circ }) - 1\]
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2{\left[ {\tan ({{45}^ \circ })} \right]^2} + {\left[ {\sin ({{45}^ \circ })} \right]^2} - 1\].................… (4)
Substitute the value of \[\tan {45^ \circ } = 1,\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] in equation (4)
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2{(1)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} - 1\]
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2 + \dfrac{1}{2} - 1\]
Take LCM in RHS of the equation
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = \dfrac{{4 + 1 - 2}}{2}\]
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = \dfrac{3}{2}\]
\[\therefore \]The value of \[2{\tan ^2}\theta + {\sin ^2}\theta - 1\] is \[\dfrac{3}{2}\]
Note: * The table that tells us some basic values of trigonometric functions at common angles is given as
* Inverse of any function when applied on the same function cancels out the function and the inverse, i.e. \[{f^{ - 1}}(f(x)) = x\].
* Acute angle: Any angle having measure less than \[{90^ \circ }\] is called an acute angle.
* \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
Complete step-by-step solution:
We are given \[\sin \theta = \cos \theta \]....................… (1)
We divide both sides of equation (1) by \[\cos \theta \]
\[ \Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\cos \theta }}{{\cos \theta }}\]
Cancel same terms in RHS of the equation and use \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]in LHS of the equation
\[ \Rightarrow \tan \theta = 1\]........................… (2)
Now we know from the table of trigonometric functions that\[\tan {45^ \circ } = 1\]. Substitute the value of 1 in equation (2)
\[ \Rightarrow \tan \theta = \tan {45^ \circ }\]
Take inverse tangent function on both sides of the equation
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}\left( {\tan {{45}^ \circ }} \right)\]
Since we know \[{f^{ - 1}}(f(x)) = x\]
\[ \Rightarrow \theta = {45^ \circ }\].........................… (3)
Since, \[\theta = {45^ \circ } < {90^ \circ }\], so the angle is an acute angle.
Now substitute the value from equation (3) in the equation \[2{\tan ^2}\theta + {\sin ^2}\theta - 1\]
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2{\tan ^2}({45^ \circ }) + {\sin ^2}({45^ \circ }) - 1\]
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2{\left[ {\tan ({{45}^ \circ })} \right]^2} + {\left[ {\sin ({{45}^ \circ })} \right]^2} - 1\].................… (4)
Substitute the value of \[\tan {45^ \circ } = 1,\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] in equation (4)
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2{(1)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} - 1\]
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = 2 + \dfrac{1}{2} - 1\]
Take LCM in RHS of the equation
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = \dfrac{{4 + 1 - 2}}{2}\]
\[ \Rightarrow 2{\tan ^2}\theta + {\sin ^2}\theta - 1 = \dfrac{3}{2}\]
\[\therefore \]The value of \[2{\tan ^2}\theta + {\sin ^2}\theta - 1\] is \[\dfrac{3}{2}\]
Note: * The table that tells us some basic values of trigonometric functions at common angles is given as
Angles (in degrees) | ${0^ \circ }$ | ${30^ \circ }$ | ${45^ \circ }$ | ${60^ \circ }$ | ${90^ \circ }$ |
sin | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | $1$ |
cos | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
tan | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Not defined |
cosec | Not defined | 2 | \[\sqrt 2 \] | \[\dfrac{2}{{\sqrt 3 }}\] | 1 |
sec | 1 | \[\dfrac{2}{{\sqrt 3 }}\] | \[\sqrt 2 \] | 2 | Not defined |
cot | Not defined | $\sqrt 3 $ | 1 | \[\dfrac{1}{{\sqrt 3 }}\] | 0 |
* Inverse of any function when applied on the same function cancels out the function and the inverse, i.e. \[{f^{ - 1}}(f(x)) = x\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE