
If ${T_n} = {\sin ^n}x + {\cos ^n}x$, prove that $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ .
Answer
592.5k+ views
Hint: In this problem, first we will find L.H.S. part $\dfrac{{{T_3} - {T_5}}}{{{T_1}}}$ by putting $n = 1,3,5$ in ${T_n} = {\sin ^n}x + {\cos ^n}x$. Then, we will find R.H.S. part $\dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ by putting $n = 3,5,7$ in ${T_n} = {\sin ^n}x + {\cos ^n}x$. Also we will use the identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$.
Complete step by step solution: In this problem, it is given that ${T_n} = {\sin ^n}x + {\cos ^n}x\; \cdots \cdots \left( 1 \right)$.
Let us find ${T_1}$ by putting $n = 1$ in equation $\left( 1 \right)$. Therefore, we get ${T_1} = {\sin ^1}x + {\cos ^1}x = \sin x + \cos x\; \cdots \cdots \left( 2 \right)$
Let us find ${T_3}$ by putting $n = 3$ in equation $\left( 1 \right)$. Therefore, we get ${T_3} = {\sin ^3}x + {\cos ^3}x\; \cdots \cdots \left( 3 \right)$
Let us find ${T_5}$ by putting $n = 5$ in equation $\left( 1 \right)$. Therefore, we get ${T_5} = {\sin ^5}x + {\cos ^5}x\; \cdots \cdots \left( 4 \right)$
Now we are going to find L.H.S. part $\dfrac{{{T_3} - {T_5}}}{{{T_1}}}$ by using equations $\left( 2 \right),\left( 3 \right)$ and $\left( 4 \right)$.
L.H.S. $ = \dfrac{{{T_3} - {T_5}}}{{{T_1}}}$
$ = \dfrac{{\left( {{{\sin }^3}x + {{\cos }^3}x} \right) - \left( {{{\sin }^5}x + {{\cos }^5}x} \right)}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x + {{\cos }^3}x - {{\sin }^5}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^3}x - {{\sin }^5}x + {{\cos }^3}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^3}x\left( {1 - {{\cos }^2}x} \right)}}{{\sin x + \cos x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ L.H.S. $ = \dfrac{{{{\sin }^3}x\left( {{{\cos }^2}x} \right) + {{\cos }^3}x\left( {{{\sin }^2}x} \right)}}{{\sin x + \cos x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
L.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {\sin x + \cos x} \right)}}{{\sin x + \cos x}}$
On cancellation of the factor $\sin x + \cos x$, we get
L.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Let us find ${T_7}$ by putting $n = 7$ in equation $\left( 1 \right)$. Therefore, we get ${T_7} = {\sin ^7}x + {\cos ^7}x\; \cdots \cdots \left( 5 \right)$.
Now we are going to find R.H.S. part $\dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ by using equations $\left( 3 \right),\left( 4 \right)$ and $\left( 5 \right)$.
R.H.S. $ = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$
$ = \dfrac{{\left( {{{\sin }^5}x + {{\cos }^5}x} \right) - \left( {{{\sin }^7}x + {{\cos }^7}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x + {{\cos }^5}x - {{\sin }^7}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^5}x - {{\sin }^7}x + {{\cos }^5}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^5}x\left( {1 - {{\cos }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ R.H.S. $ = \dfrac{{{{\sin }^5}x\left( {{{\cos }^2}x} \right) + {{\cos }^5}x\left( {{{\sin }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
R.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {{{\sin }^3}x + {{\cos }^3}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
On cancellation of the factor ${\sin ^3}x + {\cos ^3}x$, we get
R.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_5} - {T_7}}}{{{T_3}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Therefore, we can say that $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$.
Note: There are various distinct trigonometric identities. When trigonometric functions are involved in an equation then trigonometric identities are useful to solve that equation. We can use identities $\cos e{c^2}x - {\cot ^2}x = 1$ and ${\sec ^2}x - {\tan ^2}x = 1$ to solve many trigonometric problems. These identities are called Pythagorean identities.
Complete step by step solution: In this problem, it is given that ${T_n} = {\sin ^n}x + {\cos ^n}x\; \cdots \cdots \left( 1 \right)$.
Let us find ${T_1}$ by putting $n = 1$ in equation $\left( 1 \right)$. Therefore, we get ${T_1} = {\sin ^1}x + {\cos ^1}x = \sin x + \cos x\; \cdots \cdots \left( 2 \right)$
Let us find ${T_3}$ by putting $n = 3$ in equation $\left( 1 \right)$. Therefore, we get ${T_3} = {\sin ^3}x + {\cos ^3}x\; \cdots \cdots \left( 3 \right)$
Let us find ${T_5}$ by putting $n = 5$ in equation $\left( 1 \right)$. Therefore, we get ${T_5} = {\sin ^5}x + {\cos ^5}x\; \cdots \cdots \left( 4 \right)$
Now we are going to find L.H.S. part $\dfrac{{{T_3} - {T_5}}}{{{T_1}}}$ by using equations $\left( 2 \right),\left( 3 \right)$ and $\left( 4 \right)$.
L.H.S. $ = \dfrac{{{T_3} - {T_5}}}{{{T_1}}}$
$ = \dfrac{{\left( {{{\sin }^3}x + {{\cos }^3}x} \right) - \left( {{{\sin }^5}x + {{\cos }^5}x} \right)}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x + {{\cos }^3}x - {{\sin }^5}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^3}x - {{\sin }^5}x + {{\cos }^3}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^3}x\left( {1 - {{\cos }^2}x} \right)}}{{\sin x + \cos x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ L.H.S. $ = \dfrac{{{{\sin }^3}x\left( {{{\cos }^2}x} \right) + {{\cos }^3}x\left( {{{\sin }^2}x} \right)}}{{\sin x + \cos x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
L.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {\sin x + \cos x} \right)}}{{\sin x + \cos x}}$
On cancellation of the factor $\sin x + \cos x$, we get
L.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Let us find ${T_7}$ by putting $n = 7$ in equation $\left( 1 \right)$. Therefore, we get ${T_7} = {\sin ^7}x + {\cos ^7}x\; \cdots \cdots \left( 5 \right)$.
Now we are going to find R.H.S. part $\dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ by using equations $\left( 3 \right),\left( 4 \right)$ and $\left( 5 \right)$.
R.H.S. $ = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$
$ = \dfrac{{\left( {{{\sin }^5}x + {{\cos }^5}x} \right) - \left( {{{\sin }^7}x + {{\cos }^7}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x + {{\cos }^5}x - {{\sin }^7}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^5}x - {{\sin }^7}x + {{\cos }^5}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^5}x\left( {1 - {{\cos }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ R.H.S. $ = \dfrac{{{{\sin }^5}x\left( {{{\cos }^2}x} \right) + {{\cos }^5}x\left( {{{\sin }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
R.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {{{\sin }^3}x + {{\cos }^3}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
On cancellation of the factor ${\sin ^3}x + {\cos ^3}x$, we get
R.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_5} - {T_7}}}{{{T_3}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Therefore, we can say that $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$.
Note: There are various distinct trigonometric identities. When trigonometric functions are involved in an equation then trigonometric identities are useful to solve that equation. We can use identities $\cos e{c^2}x - {\cot ^2}x = 1$ and ${\sec ^2}x - {\tan ^2}x = 1$ to solve many trigonometric problems. These identities are called Pythagorean identities.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

