Answer
Verified
470.1k+ views
Hint: In this problem, first we will find L.H.S. part $\dfrac{{{T_3} - {T_5}}}{{{T_1}}}$ by putting $n = 1,3,5$ in ${T_n} = {\sin ^n}x + {\cos ^n}x$. Then, we will find R.H.S. part $\dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ by putting $n = 3,5,7$ in ${T_n} = {\sin ^n}x + {\cos ^n}x$. Also we will use the identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$.
Complete step by step solution: In this problem, it is given that ${T_n} = {\sin ^n}x + {\cos ^n}x\; \cdots \cdots \left( 1 \right)$.
Let us find ${T_1}$ by putting $n = 1$ in equation $\left( 1 \right)$. Therefore, we get ${T_1} = {\sin ^1}x + {\cos ^1}x = \sin x + \cos x\; \cdots \cdots \left( 2 \right)$
Let us find ${T_3}$ by putting $n = 3$ in equation $\left( 1 \right)$. Therefore, we get ${T_3} = {\sin ^3}x + {\cos ^3}x\; \cdots \cdots \left( 3 \right)$
Let us find ${T_5}$ by putting $n = 5$ in equation $\left( 1 \right)$. Therefore, we get ${T_5} = {\sin ^5}x + {\cos ^5}x\; \cdots \cdots \left( 4 \right)$
Now we are going to find L.H.S. part $\dfrac{{{T_3} - {T_5}}}{{{T_1}}}$ by using equations $\left( 2 \right),\left( 3 \right)$ and $\left( 4 \right)$.
L.H.S. $ = \dfrac{{{T_3} - {T_5}}}{{{T_1}}}$
$ = \dfrac{{\left( {{{\sin }^3}x + {{\cos }^3}x} \right) - \left( {{{\sin }^5}x + {{\cos }^5}x} \right)}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x + {{\cos }^3}x - {{\sin }^5}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^3}x - {{\sin }^5}x + {{\cos }^3}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^3}x\left( {1 - {{\cos }^2}x} \right)}}{{\sin x + \cos x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ L.H.S. $ = \dfrac{{{{\sin }^3}x\left( {{{\cos }^2}x} \right) + {{\cos }^3}x\left( {{{\sin }^2}x} \right)}}{{\sin x + \cos x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
L.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {\sin x + \cos x} \right)}}{{\sin x + \cos x}}$
On cancellation of the factor $\sin x + \cos x$, we get
L.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Let us find ${T_7}$ by putting $n = 7$ in equation $\left( 1 \right)$. Therefore, we get ${T_7} = {\sin ^7}x + {\cos ^7}x\; \cdots \cdots \left( 5 \right)$.
Now we are going to find R.H.S. part $\dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ by using equations $\left( 3 \right),\left( 4 \right)$ and $\left( 5 \right)$.
R.H.S. $ = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$
$ = \dfrac{{\left( {{{\sin }^5}x + {{\cos }^5}x} \right) - \left( {{{\sin }^7}x + {{\cos }^7}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x + {{\cos }^5}x - {{\sin }^7}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^5}x - {{\sin }^7}x + {{\cos }^5}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^5}x\left( {1 - {{\cos }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ R.H.S. $ = \dfrac{{{{\sin }^5}x\left( {{{\cos }^2}x} \right) + {{\cos }^5}x\left( {{{\sin }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
R.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {{{\sin }^3}x + {{\cos }^3}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
On cancellation of the factor ${\sin ^3}x + {\cos ^3}x$, we get
R.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_5} - {T_7}}}{{{T_3}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Therefore, we can say that $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$.
Note: There are various distinct trigonometric identities. When trigonometric functions are involved in an equation then trigonometric identities are useful to solve that equation. We can use identities $\cos e{c^2}x - {\cot ^2}x = 1$ and ${\sec ^2}x - {\tan ^2}x = 1$ to solve many trigonometric problems. These identities are called Pythagorean identities.
Complete step by step solution: In this problem, it is given that ${T_n} = {\sin ^n}x + {\cos ^n}x\; \cdots \cdots \left( 1 \right)$.
Let us find ${T_1}$ by putting $n = 1$ in equation $\left( 1 \right)$. Therefore, we get ${T_1} = {\sin ^1}x + {\cos ^1}x = \sin x + \cos x\; \cdots \cdots \left( 2 \right)$
Let us find ${T_3}$ by putting $n = 3$ in equation $\left( 1 \right)$. Therefore, we get ${T_3} = {\sin ^3}x + {\cos ^3}x\; \cdots \cdots \left( 3 \right)$
Let us find ${T_5}$ by putting $n = 5$ in equation $\left( 1 \right)$. Therefore, we get ${T_5} = {\sin ^5}x + {\cos ^5}x\; \cdots \cdots \left( 4 \right)$
Now we are going to find L.H.S. part $\dfrac{{{T_3} - {T_5}}}{{{T_1}}}$ by using equations $\left( 2 \right),\left( 3 \right)$ and $\left( 4 \right)$.
L.H.S. $ = \dfrac{{{T_3} - {T_5}}}{{{T_1}}}$
$ = \dfrac{{\left( {{{\sin }^3}x + {{\cos }^3}x} \right) - \left( {{{\sin }^5}x + {{\cos }^5}x} \right)}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x + {{\cos }^3}x - {{\sin }^5}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^3}x - {{\sin }^5}x + {{\cos }^3}x - {{\cos }^5}x}}{{\sin x + \cos x}}$
$ = \dfrac{{{{\sin }^3}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^3}x\left( {1 - {{\cos }^2}x} \right)}}{{\sin x + \cos x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ L.H.S. $ = \dfrac{{{{\sin }^3}x\left( {{{\cos }^2}x} \right) + {{\cos }^3}x\left( {{{\sin }^2}x} \right)}}{{\sin x + \cos x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
L.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {\sin x + \cos x} \right)}}{{\sin x + \cos x}}$
On cancellation of the factor $\sin x + \cos x$, we get
L.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Let us find ${T_7}$ by putting $n = 7$ in equation $\left( 1 \right)$. Therefore, we get ${T_7} = {\sin ^7}x + {\cos ^7}x\; \cdots \cdots \left( 5 \right)$.
Now we are going to find R.H.S. part $\dfrac{{{T_5} - {T_7}}}{{{T_3}}}$ by using equations $\left( 3 \right),\left( 4 \right)$ and $\left( 5 \right)$.
R.H.S. $ = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$
$ = \dfrac{{\left( {{{\sin }^5}x + {{\cos }^5}x} \right) - \left( {{{\sin }^7}x + {{\cos }^7}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x + {{\cos }^5}x - {{\sin }^7}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Rewrite the above equation, we get
$ = \dfrac{{{{\sin }^5}x - {{\sin }^7}x + {{\cos }^5}x - {{\cos }^7}x}}{{{{\sin }^3}x + {{\cos }^3}x}}$
$ = \dfrac{{{{\sin }^5}x\left( {1 - {{\sin }^2}x} \right) + {{\cos }^5}x\left( {1 - {{\cos }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Now we are going to use Pythagorean identity ${\sin ^2}x + {\cos ^2}x = 1$. Note that ${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$ or ${\cos ^2}x = 1 - {\sin ^2}x$.
$ \Rightarrow $ R.H.S. $ = \dfrac{{{{\sin }^5}x\left( {{{\cos }^2}x} \right) + {{\cos }^5}x\left( {{{\sin }^2}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
Taking ${\sin ^2}x \cdot {\cos ^2}x$ common out from the numerator, we get
R.H.S. $ = \dfrac{{{{\sin }^2}x \cdot {{\cos }^2}x\left( {{{\sin }^3}x + {{\cos }^3}x} \right)}}{{{{\sin }^3}x + {{\cos }^3}x}}$
On cancellation of the factor ${\sin ^3}x + {\cos ^3}x$, we get
R.H.S. $ = {\sin ^2}x \cdot {\cos ^2}x$
Therefore, we get $\dfrac{{{T_5} - {T_7}}}{{{T_3}}} = {\sin ^2}x \cdot {\cos ^2}x$.
Therefore, we can say that $\dfrac{{{T_3} - {T_5}}}{{{T_1}}} = \dfrac{{{T_5} - {T_7}}}{{{T_3}}}$.
Note: There are various distinct trigonometric identities. When trigonometric functions are involved in an equation then trigonometric identities are useful to solve that equation. We can use identities $\cos e{c^2}x - {\cot ^2}x = 1$ and ${\sec ^2}x - {\tan ^2}x = 1$ to solve many trigonometric problems. These identities are called Pythagorean identities.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE