Answer
Verified
470.1k+ views
Hint: We will use various trigonometric identities to solve this question some of them are as states below,
\[\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sin 2\theta =2\sin \theta \cos \theta ,\sin \left( A+B \right)=\sin A.\cos B+\cos A.\sin B\] and \[2\sin A.\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]. Also we will use the fact that if 3 numbers a, b & c are in AP then, $2b = a + c.$
Complete step-by-step solution:
Given that \[\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alpha \right)\] are in AP.
If three numbers are in AP, then; suppose a, b & c are the three numbers in AP then,
\[b=\dfrac{a+c}{2}\] or \[2b=a+c\] ------ (1)
Here, Let \[a=\cot \left( \theta -\alpha \right),b=3\cot \theta ,c=\cot \left( \theta +\alpha \right)\].
Substituting these values in equation (1), as they are in AP we get,
\[2\left[ 3\cot \theta \right]=\cot \left( \theta -\alpha \right)+\cot \left( \theta +\alpha \right)\]
Now because we have, \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Converting \[\cot \theta \] in terms of \[\cos \theta \] & \[\sin \theta \] in above equation we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)}+\dfrac{\cos \left( \theta +\alpha \right)}{\sin \left( \theta +\alpha \right)}\]
Now taking LCM of denominator we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)+\cos \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)}\]
Now we have a trigonometric identity as,
\[\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right)\]
Let, \[A=\left( \theta -\alpha \right),B=\left( \theta +\alpha \right)\]
Using this trigonometric identity in above equation we get,
\[\begin{align}
& 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( \theta +\alpha +\theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)} \\
& \Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( 2\theta \right)}{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)} \\
\end{align}\]
Using trigonometric identity, \[\sin 2\theta =2\sin \theta \cos \theta \] in above we get,
\[\Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{2\sin \theta \cos \theta }{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}\]
Cross multiplying both we have,
\[6\cos \theta \left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]=2{{\sin }^{2}}\theta \cos \theta \]
Cancelling \[\cos \theta \] and 2 from both sides we get,
\[3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
Using trigonometric identity stated as,
\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\] in above by taking, \[A=\theta +\alpha \] and \[B=\theta -\alpha \] we get,
\[\begin{align}
& \Rightarrow 3\left[ \cos \left( \theta +\alpha -\theta +\alpha \right)-\cos \left( \theta -\alpha +\theta +\alpha \right) \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow 3\left( \cos 2\alpha -\cos 2\theta \right)=2{{\sin }^{2}}\theta \\
\end{align}\]
Now we will use trigonometric identity as stated,
\[\cos 2A=1-2{{\sin }^{2}}A\]
Using this above we get,
\[\begin{align}
& \Rightarrow 3\left[ 1-2{{\sin }^{2}}\alpha +2{{\sin }^{2}}\theta -1 \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha +6{{\sin }^{2}}\theta =2{{\sin }^{2}}\theta \\
\end{align}\]
\[\begin{align}
& \Rightarrow -6{{\sin }^{2}}\alpha =2{{\sin }^{2}}\theta -6{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha =-4{{\sin }^{2}}\theta \\
\end{align}\]
Dividing by \[-{{\sin }^{2}}\alpha \] both sides we get,
\[\Rightarrow +6=+4\dfrac{{{\sin }^{2}}\theta }{{{\sin }^{2}}\alpha }\]
Dividing by 3 both sides we get,
\[\Rightarrow \dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\]
So, answer is, \[\dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\].
Note: Always remember that it is given that \[\theta \] is not an integral multiple of \[\dfrac{\pi }{2}\] therefore we can never use the formula of \[\sin \left( \theta +\dfrac{\pi }{2} \right)\] or \[\sin \left( \alpha +\dfrac{\pi }{2} \right)\] throughout the solution. Hence we have done all calculation without using these formulas.
\[\Rightarrow 3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
\[\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sin 2\theta =2\sin \theta \cos \theta ,\sin \left( A+B \right)=\sin A.\cos B+\cos A.\sin B\] and \[2\sin A.\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]. Also we will use the fact that if 3 numbers a, b & c are in AP then, $2b = a + c.$
Complete step-by-step solution:
Given that \[\cot \left( \theta -\alpha \right),3\cot \theta ,\cot \left( \theta +\alpha \right)\] are in AP.
If three numbers are in AP, then; suppose a, b & c are the three numbers in AP then,
\[b=\dfrac{a+c}{2}\] or \[2b=a+c\] ------ (1)
Here, Let \[a=\cot \left( \theta -\alpha \right),b=3\cot \theta ,c=\cot \left( \theta +\alpha \right)\].
Substituting these values in equation (1), as they are in AP we get,
\[2\left[ 3\cot \theta \right]=\cot \left( \theta -\alpha \right)+\cot \left( \theta +\alpha \right)\]
Now because we have, \[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Converting \[\cot \theta \] in terms of \[\cos \theta \] & \[\sin \theta \] in above equation we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)}+\dfrac{\cos \left( \theta +\alpha \right)}{\sin \left( \theta +\alpha \right)}\]
Now taking LCM of denominator we get,
\[6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\cos \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)+\cos \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)}\]
Now we have a trigonometric identity as,
\[\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right)\]
Let, \[A=\left( \theta -\alpha \right),B=\left( \theta +\alpha \right)\]
Using this trigonometric identity in above equation we get,
\[\begin{align}
& 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( \theta +\alpha +\theta -\alpha \right)}{\sin \left( \theta -\alpha \right)\sin \left( \theta +\alpha \right)} \\
& \Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{\sin \left( 2\theta \right)}{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)} \\
\end{align}\]
Using trigonometric identity, \[\sin 2\theta =2\sin \theta \cos \theta \] in above we get,
\[\Rightarrow 6\dfrac{\cos \theta }{\sin \theta }=\dfrac{2\sin \theta \cos \theta }{\sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right)}\]
Cross multiplying both we have,
\[6\cos \theta \left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]=2{{\sin }^{2}}\theta \cos \theta \]
Cancelling \[\cos \theta \] and 2 from both sides we get,
\[3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
Using trigonometric identity stated as,
\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\] in above by taking, \[A=\theta +\alpha \] and \[B=\theta -\alpha \] we get,
\[\begin{align}
& \Rightarrow 3\left[ \cos \left( \theta +\alpha -\theta +\alpha \right)-\cos \left( \theta -\alpha +\theta +\alpha \right) \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow 3\left( \cos 2\alpha -\cos 2\theta \right)=2{{\sin }^{2}}\theta \\
\end{align}\]
Now we will use trigonometric identity as stated,
\[\cos 2A=1-2{{\sin }^{2}}A\]
Using this above we get,
\[\begin{align}
& \Rightarrow 3\left[ 1-2{{\sin }^{2}}\alpha +2{{\sin }^{2}}\theta -1 \right]=2{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha +6{{\sin }^{2}}\theta =2{{\sin }^{2}}\theta \\
\end{align}\]
\[\begin{align}
& \Rightarrow -6{{\sin }^{2}}\alpha =2{{\sin }^{2}}\theta -6{{\sin }^{2}}\theta \\
& \Rightarrow -6{{\sin }^{2}}\alpha =-4{{\sin }^{2}}\theta \\
\end{align}\]
Dividing by \[-{{\sin }^{2}}\alpha \] both sides we get,
\[\Rightarrow +6=+4\dfrac{{{\sin }^{2}}\theta }{{{\sin }^{2}}\alpha }\]
Dividing by 3 both sides we get,
\[\Rightarrow \dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\]
So, answer is, \[\dfrac{4{{\sin }^{2}}\theta }{3{{\sin }^{2}}\alpha }=2\].
Note: Always remember that it is given that \[\theta \] is not an integral multiple of \[\dfrac{\pi }{2}\] therefore we can never use the formula of \[\sin \left( \theta +\dfrac{\pi }{2} \right)\] or \[\sin \left( \alpha +\dfrac{\pi }{2} \right)\] throughout the solution. Hence we have done all calculation without using these formulas.
\[\Rightarrow 3\left[ \sin \left( \theta +\alpha \right)\sin \left( \theta -\alpha \right) \right]={{\sin }^{2}}\theta \]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE