Answer
Verified
497.4k+ views
Hint: Let us draw the truth table for different values of p and q. So, we can find the value of a given equation easily.
Complete step-by-step answer:
Now according to the preference order of mathematical reasoning.
Priority goes from left to right in a statement.
And the preference order is
Brackets ( )
Negation \[ \sim \]
And \[ \wedge \]
Or \[ \vee \]
Conditional \[ \to \]
Biconditional \[ \leftrightarrow \]
Now comes the question how to apply these operations. For this we are given with the truth table which states that if p and q are two given conditions and T stands for true and F stands for false then truth table for various values of p and q will be,
Now coming to the problem first we had to solve brackets.
And according to the preference order first we will find the value \[ \sim p\] in the bracket and after that find the value of \[ \sim p \vee q\].
So, using truth table if p is F then \[ \sim p\] will be T
Now we had to find or (\[ \vee \]) of \[ \sim p\] and q. And it is given in the question that q is T
Using truth table,
Or (\[ \vee \]) of T and T is T.
So, \[( \sim p \vee q)\] will be T.
Now finding negation of \[( \sim p \vee q)\].
As we know that the value of \[( \sim p \vee q)\] is T. So, according to the truth table negation of T will be F.
Hence, the value of \[ \sim ( \sim p \vee q)\] will be F.
So, the correct option will be B.
Note: Whenever we came up with this type of problem then to find the value of the given statement or equation efficiently first, we had to make a truth table for the given values and then use the preference order defined in mathematical reasoning to solve the equation step by step.
Complete step-by-step answer:
Now according to the preference order of mathematical reasoning.
Priority goes from left to right in a statement.
And the preference order is
Brackets ( )
Negation \[ \sim \]
And \[ \wedge \]
Or \[ \vee \]
Conditional \[ \to \]
Biconditional \[ \leftrightarrow \]
Now comes the question how to apply these operations. For this we are given with the truth table which states that if p and q are two given conditions and T stands for true and F stands for false then truth table for various values of p and q will be,
p | q | \[ \sim \]p | \[ \sim \]q | p\[ \wedge \]q | p\[ \vee \]q | p\[ \to \]q | p\[ \leftrightarrow \]q |
T | T | F | F | T | T | T | T |
T | F | F | T | F | T | F | F |
F | T | T | F | F | T | T | F |
F | F | T | T | F | F | T | T |
Now coming to the problem first we had to solve brackets.
And according to the preference order first we will find the value \[ \sim p\] in the bracket and after that find the value of \[ \sim p \vee q\].
So, using truth table if p is F then \[ \sim p\] will be T
Now we had to find or (\[ \vee \]) of \[ \sim p\] and q. And it is given in the question that q is T
Using truth table,
Or (\[ \vee \]) of T and T is T.
So, \[( \sim p \vee q)\] will be T.
Now finding negation of \[( \sim p \vee q)\].
As we know that the value of \[( \sim p \vee q)\] is T. So, according to the truth table negation of T will be F.
Hence, the value of \[ \sim ( \sim p \vee q)\] will be F.
So, the correct option will be B.
Note: Whenever we came up with this type of problem then to find the value of the given statement or equation efficiently first, we had to make a truth table for the given values and then use the preference order defined in mathematical reasoning to solve the equation step by step.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE