
If two irrational number are given as a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$, If value of a + b -5ab is -4$\sqrt {\text{m}} $+ 5 then find m.
Answer
621.3k+ views
Hint:- Take LCM while solving the equation and simplify before equating. Equate irrational terms of both sides.
Complete step-by-step solution -
Given, a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ and,
a + b -5ab = -4$\sqrt {\text{m}} $+ 5
Putting the values of a and b in above equation
$\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ + $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ - 5 $\left( {\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}} \right)$$\left( {\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}} \right)$ = -4$\sqrt {\text{m}} $+ 5
Taking L.C.M. , we get
$\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2} + {{\left( {\sqrt 3 + \sqrt 2 } \right)}^2} - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Using the algebraic identities ${{\text{(a + b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab }}$and ${{\text{(a - b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab }}$, we get
$\dfrac{{\left( {3 + 2 - 2\sqrt 6 } \right) + \left( {3 + 2 + 2\sqrt 6 } \right) - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Simplifying and using another algebraic identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$
$\dfrac{{10 - 5\left( {3 - 2} \right)}}{{\left( {3 - 2} \right)}}$= -4$\sqrt {\text{m}} $+ 5
$5$= -4$\sqrt {\text{m}} $+ 5
-4$\sqrt {\text{m}} $= 0
$\sqrt {\text{m}} $=0
m = 0.
Hence, m = 0.
Note:- In these types of questions, we need to simplify and apply all possible algebraic identity. The identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$ is very helpful in simplification.
Complete step-by-step solution -
Given, a = $\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ and b = $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ and,
a + b -5ab = -4$\sqrt {\text{m}} $+ 5
Putting the values of a and b in above equation
$\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}$ + $\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}$ - 5 $\left( {\dfrac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}} \right)$$\left( {\dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}} \right)$ = -4$\sqrt {\text{m}} $+ 5
Taking L.C.M. , we get
$\dfrac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2} + {{\left( {\sqrt 3 + \sqrt 2 } \right)}^2} - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Using the algebraic identities ${{\text{(a + b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + 2ab }}$and ${{\text{(a - b)}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab }}$, we get
$\dfrac{{\left( {3 + 2 - 2\sqrt 6 } \right) + \left( {3 + 2 + 2\sqrt 6 } \right) - 5\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}$= -4$\sqrt {\text{m}} $+ 5
Simplifying and using another algebraic identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$
$\dfrac{{10 - 5\left( {3 - 2} \right)}}{{\left( {3 - 2} \right)}}$= -4$\sqrt {\text{m}} $+ 5
$5$= -4$\sqrt {\text{m}} $+ 5
-4$\sqrt {\text{m}} $= 0
$\sqrt {\text{m}} $=0
m = 0.
Hence, m = 0.
Note:- In these types of questions, we need to simplify and apply all possible algebraic identity. The identity $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right) = {{\text{a}}^2}{\text{ - }}{{\text{b}}^2}$ is very helpful in simplification.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

