Answer
Verified
432.9k+ views
Hint:In the above question, we are provided with a triangle with sides a, b and c with angle A, B and C. These angles are taken according to the sides like-ways we have to find the sum of values of the third side so, use angle A and use the cosine formula. then form the quadratic equation, using the properties of the quadratic equation finds the answer.
Complete step by step solution:
In the above question, we had a triangle with sides namely $a,b,c$ having the angle A. and we had to find the sum of two values of the third side. for that using the cosine formula,
$\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
Now, cross multiplying and forming a quadratic equation,
$2bc.\cos A = {b^2} + {c^2} - {a^2}$
Now, forming a quadratic equation in terms of c
${c^2} - (2b.\cos A)c + ({b^2} - {a^2}) = 0$
Let ${c_1},{c_2}$ be the roots of the above equations
And we know that the sum of roots of a quadratic equation is equal to the coefficient of the “c” and the product of the roots of the quadratic equation is equal to the product of the coefficient of the constant term and the coefficient of the ${c^2}$
Hence, on the behalf of the above statement
${c_1} + {c_2} = 2b.\cos A$
And ${c_1}{c_2} = {b^2} - {a^2}$
Hence, the sum of the values of the third side is $2b\cos A$
So, the correct option is B.
Note: Remember to use the cosine formula carefully, while writing the cosine formula for angle A which is between the sides b and c. So, the squares of sides b and c are taken as positive and a as negative with dividing the product of sides b and c.
Complete step by step solution:
In the above question, we had a triangle with sides namely $a,b,c$ having the angle A. and we had to find the sum of two values of the third side. for that using the cosine formula,
$\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
Now, cross multiplying and forming a quadratic equation,
$2bc.\cos A = {b^2} + {c^2} - {a^2}$
Now, forming a quadratic equation in terms of c
${c^2} - (2b.\cos A)c + ({b^2} - {a^2}) = 0$
Let ${c_1},{c_2}$ be the roots of the above equations
And we know that the sum of roots of a quadratic equation is equal to the coefficient of the “c” and the product of the roots of the quadratic equation is equal to the product of the coefficient of the constant term and the coefficient of the ${c^2}$
Hence, on the behalf of the above statement
${c_1} + {c_2} = 2b.\cos A$
And ${c_1}{c_2} = {b^2} - {a^2}$
Hence, the sum of the values of the third side is $2b\cos A$
So, the correct option is B.
Note: Remember to use the cosine formula carefully, while writing the cosine formula for angle A which is between the sides b and c. So, the squares of sides b and c are taken as positive and a as negative with dividing the product of sides b and c.
Recently Updated Pages
During the electrolysis of sodium ethanoate the gas class 11 maths JEE_Main
1bromo3chlorocyclobutane when treated with two equivalents class 11 chem sec 1 JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
A uniform rod of length L and mass M is pivoted at class 11 physics JEE_Main
The locus of the midpoint of the chord of contact of class 11 maths JEE_Main
The number of common tangents to the circles x2 + y2 class 11 maths JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE