
If V is the volume of the parallelepiped having three coterminous edges as , and , then the volume of the parallelepiped having three coterminous edges as:
, , is
A.
B.
C.
D.
Answer
491.4k+ views
Hint: We will calculate the required volume of the parallelepiped using the volume V of the given parallelepiped. The volume of the parallelepiped is given as: [ ] where , and are the edges of the parallelepiped. We will first calculate the unknown volume of the parallelepiped using the formula of the volume of the parallelepiped and then upon simplification by using the identity [ ] = where , and then, we will use the given volume V = [ ] to calculate the required volume.
Complete step-by-step answer:
We are given that the volume of the parallelepiped having three coterminous edges , and is: V
We need to find the volume of the parallelepiped having three coterminous edges as:
, ,
We know that the formula of the volume of the parallelepiped is given by the formula:
Volume = [ ] where , and are the edges of the parallelepiped
The required volume of the parallelepiped will be:
volume =
Or, we can write this by using the identity [ ] = where , and ,as:
volume =
Similarly, using the identity again, we can write this as:
volume =
volume = =
Now, we know that the volume V =
volume of the required parallelepiped in terms of .
Hence, option(A) is correct.
Note: In such questions, you may get confused while solving the box product and you must be careful while using the identity to simplify the required volume of the given parallelepiped.
You may also solve this question by simplifying the volume using the formula of calculating the area of cross product or by using identities of the determinants.
Complete step-by-step answer:
We are given that the volume of the parallelepiped having three coterminous edges

We need to find the volume of the parallelepiped having three coterminous edges as:
We know that the formula of the volume of the parallelepiped is given by the formula:
Volume = [
The required volume of the parallelepiped will be:
Or, we can write this by using the identity [
Similarly, using the identity again, we can write this as:
Now, we know that the volume V =
Hence, option(A) is correct.
Note: In such questions, you may get confused while solving the box product and you must be careful while using the identity to simplify the required volume of the given parallelepiped.
You may also solve this question by simplifying the volume using the formula of calculating the area of cross product or by using identities of the determinants.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
