![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
If ${{v}_{e}}$ is escape velocity and ${{v}_{o}}$ is the orbital velocity of a satellite for orbit close to the earth’s surface, then these are related by:
A. ${{v}_{o}}={{v}_{e}}$
B. ${{v}_{e}}=\sqrt{2{{v}_{o}}}$
C. ${{v}_{e}}=\sqrt{2}{{v}_{o}}$
D. ${{v}_{o}}=\sqrt{2}{{v}_{e}}$
Answer
486.9k+ views
Hint: For this question we will find the value of escape velocity such that when the particle reaches infinity it has non-negative total energy(zero for the equivalency case). And then we will find the value of orbital velocity close to the surface of earth by balancing the gravitational force with the centripetal force. And then we will compare the two.
Formula used:
Kinetic energy: $\dfrac{m{{v}^{2}}}{2}$
Gravitational potential energy: $-\dfrac{GMm}{\operatorname{R}}$
Centripetal force: \[\dfrac{m{{v}^{2}}}{\operatorname{R}}\]
Gravitational force: \[\dfrac{GMm}{{{\operatorname{R}}^{2}}}\]
Complete step-by-step answer:
First, let us find the escape velocity from the surface of the earth. We will take the energy of the particle at the surface of the earth which will be the sum of gravitational potential energy (we will take reference at infinity) and its kinetic energy. This must be greater than zero because when the object reaches infinity it will have zero potential energy, but its total energy remains constant.
So, $\dfrac{m{{v}_{e}}^{2}}{2}-\dfrac{GMm}{{{\operatorname{R}}_{e}}}\ge 0$
Here M is the mass of the earth and m is the mass of the object. \[{{\operatorname{R}}_{e}}\] is the radius of the earth as we are taking the point of launch as the surface of the earth. At escape velocity the particle just reaches infinity so we will take the condition where energy is equal to zero. We will replace the value of g here.
$\begin{align}
& \dfrac{m{{v}_{e}}^{2}}{2}-\dfrac{GMm}{{{\operatorname{R}}_{e}}}=0 \\
& \dfrac{m{{v}_{e}}^{2}}{2}=\dfrac{GMm}{{{\operatorname{R}}_{e}}}=mg{{\operatorname{R}}_{e}}\Rightarrow {{v}_{e}}=\sqrt{2g{{\operatorname{R}}_{e}}} \\
\end{align}$
Now, let us find the orbital velocity of a satellite orbiting close to the surface of earth. We will take the radius of the motion of the satellite to be the same as that of earth in our calculations. We will equate the force of gravity and the centripetal force to find the orbital velocity
\[\begin{align}
& \dfrac{m{{v}_{o}}^{2}}{{{\operatorname{R}}_{e}}}=\dfrac{GMm}{{{\operatorname{R}}_{e}}^{2}}=mg \\
& {{v}_{o}}=\sqrt{g{{\operatorname{R}}_{e}}} \\
\end{align}\]
So, we get that ${{v}_{e}}$ is $\sqrt{2}$ times ${{v}_{o}}$.
So, the correct answer is “Option C”.
Note: Special care must be taken to avoid calculation mistakes. Also take care that when we take the reference as infinity for gravitational potential energy, the gravitational potential energy near the surface of earth will be negative as potential energy is always taken with a reference. The common formula of mgh will not be used as the potential energy is considered as zero at the surface in that case.
Formula used:
Kinetic energy: $\dfrac{m{{v}^{2}}}{2}$
Gravitational potential energy: $-\dfrac{GMm}{\operatorname{R}}$
Centripetal force: \[\dfrac{m{{v}^{2}}}{\operatorname{R}}\]
Gravitational force: \[\dfrac{GMm}{{{\operatorname{R}}^{2}}}\]
Complete step-by-step answer:
First, let us find the escape velocity from the surface of the earth. We will take the energy of the particle at the surface of the earth which will be the sum of gravitational potential energy (we will take reference at infinity) and its kinetic energy. This must be greater than zero because when the object reaches infinity it will have zero potential energy, but its total energy remains constant.
So, $\dfrac{m{{v}_{e}}^{2}}{2}-\dfrac{GMm}{{{\operatorname{R}}_{e}}}\ge 0$
Here M is the mass of the earth and m is the mass of the object. \[{{\operatorname{R}}_{e}}\] is the radius of the earth as we are taking the point of launch as the surface of the earth. At escape velocity the particle just reaches infinity so we will take the condition where energy is equal to zero. We will replace the value of g here.
$\begin{align}
& \dfrac{m{{v}_{e}}^{2}}{2}-\dfrac{GMm}{{{\operatorname{R}}_{e}}}=0 \\
& \dfrac{m{{v}_{e}}^{2}}{2}=\dfrac{GMm}{{{\operatorname{R}}_{e}}}=mg{{\operatorname{R}}_{e}}\Rightarrow {{v}_{e}}=\sqrt{2g{{\operatorname{R}}_{e}}} \\
\end{align}$
Now, let us find the orbital velocity of a satellite orbiting close to the surface of earth. We will take the radius of the motion of the satellite to be the same as that of earth in our calculations. We will equate the force of gravity and the centripetal force to find the orbital velocity
\[\begin{align}
& \dfrac{m{{v}_{o}}^{2}}{{{\operatorname{R}}_{e}}}=\dfrac{GMm}{{{\operatorname{R}}_{e}}^{2}}=mg \\
& {{v}_{o}}=\sqrt{g{{\operatorname{R}}_{e}}} \\
\end{align}\]
So, we get that ${{v}_{e}}$ is $\sqrt{2}$ times ${{v}_{o}}$.
So, the correct answer is “Option C”.
Note: Special care must be taken to avoid calculation mistakes. Also take care that when we take the reference as infinity for gravitational potential energy, the gravitational potential energy near the surface of earth will be negative as potential energy is always taken with a reference. The common formula of mgh will not be used as the potential energy is considered as zero at the surface in that case.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)