Answer
Verified
497.4k+ views
Hint: To solve the question, we have to apply the properties of the dot product of vectors to calculate the value of \[\lambda \].
Complete step-by-step Solution:
The vector \[\vec{a}+\lambda \vec{b}\] is given that it is perpendicular to the vector \[\vec{c}\].
The given values of the vectors \[\vec{a},\vec{b},\vec{c}\] are \[2\hat{i}+2\hat{j}+3\hat{k}\] , \[-\hat{i}+2\hat{j}+\hat{k}\], \[3\hat{i}+\hat{j}\]respectively.
By substituting the value of vector \[\vec{a},\vec{b}\] in \[\vec{a}+\lambda \vec{b}\] we get,
\[\vec{a}+\lambda \vec{b}=2\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( -\hat{i}+2\hat{j}+\hat{k} \right)\]
\[=\left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k}\]
We know that a dot product of \[\vec{a},\vec{b}\]is given the formula \[\vec{a}.\vec{b}=\left\| {\vec{a}} \right\|\left\| {\vec{b}} \right\|\cos \theta \]
Where \[\theta ,\left\| {} \right\|\] represent the angle between the given vectors and the magnitude of the vector respectively.
Now we know that when \[\theta ={{90}^{0}}\], \[\cos \left( {{90}^{0}} \right)=0\] thus the dot product of perpendicular vectors is 0.
Thus, the product of the vectors \[\vec{a}+\lambda \vec{b}\] and \[\vec{c}\]is equal to 0.
\[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=\left( \left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k} \right).\left( 3\hat{i}+\hat{j} \right)\]
\[=\left( 3\left( 2-\lambda \right)\hat{i}.\hat{i}+3\left( 2+2\lambda \right)\hat{j}.\hat{i}+3\left( 3+\lambda \right)\hat{k}.\hat{i} \right)+\left( \left( 2-\lambda \right)\hat{i}.\hat{j}+\left( 2+2\lambda \right)\hat{j}.\hat{j}+\left( 3+\lambda \right)\hat{k}.\hat{j} \right)\] ….. (1)
We know that the dot product of the orthogonal vectors \[\hat{i},\hat{j},\hat{k}\] is given by the following values.
\[\hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{i}.\hat{k}=0\] and \[\hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1\]
By substituting the values in equation (1) and equating it the value of 0 since \[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=0\]we get,
\[\left( 3\left( 2-\lambda \right)\times 1+3\left( 2+2\lambda \right)\times 0+3\left( 3+\lambda \right)\times 0 \right)+\left( \left( 2-\lambda \right)\times 0+\left( 2+2\lambda \right)\times 1+\left( 3+\lambda \right)\times 0 \right)=0\]
\[3\left( 2-\lambda \right)+\left( 2+2\lambda \right)=0\]
\[6-3\lambda +2+2\lambda =0\]
\[8-\lambda =0\]
\[\lambda =8\]
Thus, for the given condition \[\vec{a}+\lambda \vec{b}\] is perpendicular to the vector \[\vec{c}\], the value of \[\lambda \]is equal to 8.
Note: The possibility of mistake can be not able to analyse that dot product can be used for solving the given problem. The other possibility of mistake is doing simple multiplication using a vector product, the dot product of vectors is different from normal scalar multiplication. The alternative way of solving the question can be applying the properties of cross product of vectors. The cross product of perpendicular vectors is equal to 1 and the cross-product property is \[\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0\].
Complete step-by-step Solution:
The vector \[\vec{a}+\lambda \vec{b}\] is given that it is perpendicular to the vector \[\vec{c}\].
The given values of the vectors \[\vec{a},\vec{b},\vec{c}\] are \[2\hat{i}+2\hat{j}+3\hat{k}\] , \[-\hat{i}+2\hat{j}+\hat{k}\], \[3\hat{i}+\hat{j}\]respectively.
By substituting the value of vector \[\vec{a},\vec{b}\] in \[\vec{a}+\lambda \vec{b}\] we get,
\[\vec{a}+\lambda \vec{b}=2\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( -\hat{i}+2\hat{j}+\hat{k} \right)\]
\[=\left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k}\]
We know that a dot product of \[\vec{a},\vec{b}\]is given the formula \[\vec{a}.\vec{b}=\left\| {\vec{a}} \right\|\left\| {\vec{b}} \right\|\cos \theta \]
Where \[\theta ,\left\| {} \right\|\] represent the angle between the given vectors and the magnitude of the vector respectively.
Now we know that when \[\theta ={{90}^{0}}\], \[\cos \left( {{90}^{0}} \right)=0\] thus the dot product of perpendicular vectors is 0.
Thus, the product of the vectors \[\vec{a}+\lambda \vec{b}\] and \[\vec{c}\]is equal to 0.
\[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=\left( \left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k} \right).\left( 3\hat{i}+\hat{j} \right)\]
\[=\left( 3\left( 2-\lambda \right)\hat{i}.\hat{i}+3\left( 2+2\lambda \right)\hat{j}.\hat{i}+3\left( 3+\lambda \right)\hat{k}.\hat{i} \right)+\left( \left( 2-\lambda \right)\hat{i}.\hat{j}+\left( 2+2\lambda \right)\hat{j}.\hat{j}+\left( 3+\lambda \right)\hat{k}.\hat{j} \right)\] ….. (1)
We know that the dot product of the orthogonal vectors \[\hat{i},\hat{j},\hat{k}\] is given by the following values.
\[\hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{i}.\hat{k}=0\] and \[\hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1\]
By substituting the values in equation (1) and equating it the value of 0 since \[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=0\]we get,
\[\left( 3\left( 2-\lambda \right)\times 1+3\left( 2+2\lambda \right)\times 0+3\left( 3+\lambda \right)\times 0 \right)+\left( \left( 2-\lambda \right)\times 0+\left( 2+2\lambda \right)\times 1+\left( 3+\lambda \right)\times 0 \right)=0\]
\[3\left( 2-\lambda \right)+\left( 2+2\lambda \right)=0\]
\[6-3\lambda +2+2\lambda =0\]
\[8-\lambda =0\]
\[\lambda =8\]
Thus, for the given condition \[\vec{a}+\lambda \vec{b}\] is perpendicular to the vector \[\vec{c}\], the value of \[\lambda \]is equal to 8.
Note: The possibility of mistake can be not able to analyse that dot product can be used for solving the given problem. The other possibility of mistake is doing simple multiplication using a vector product, the dot product of vectors is different from normal scalar multiplication. The alternative way of solving the question can be applying the properties of cross product of vectors. The cross product of perpendicular vectors is equal to 1 and the cross-product property is \[\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE