
If $w$ is the complex cube root of unity, find the value of
i. $w + \dfrac{1}{w}$
ii. ${w^2} + {w^3} + {w^4}$
iii. ${\left( {1 + {w^2}} \right)^3}$
iv. ${\left( {1 - w - {w^2}} \right)^3} + {\left( {1 - w + {w^2}} \right)^3}$
Answer
537.9k+ views
Hint:Before solving the complex cube root questions, we need to know the basic properties of the complex cube root of the unity. Which tells that ${w^3} = 1$ which can also be written in the form of $1 + w + {w^2} = 0$ using these two equations, we can find the value of all the above options.
Complete step by step solution:
In the above question, we are given that $w$ is the complex cube root of unity which mean ${w^3} = 1$
or can be written as $1 + w + {w^2} = 0$
Or we can use it as $1 + w = - {w^2}$ or $1 + {w^2} = - w$
Now, finding the
i. $w + \dfrac{1}{w}$ $ = \dfrac{{{w^2} + 1}}{w}$ (cross-multiplying)
$ = \dfrac{{ - w}}{w} = - 1$ (using the above written properties $1 + {w^2} = -
w$)
ii. ${w^2} + {w^3} + {w^4}$
taking common and then using the above property $1 + w + {w^2} = 0$
$ = {w^2}\left( {1 + w + {w^2}} \right)$
$ = 0$
iii. ${\left( {1 + {w^2}} \right)^3}$
Using the property $1 + {w^2} = - w$
$
= {\left( { - w} \right)^3} = - {w^3} \\
= - 1 \\
$ (using ${w^3} = 1$ )
iv. ${\left( {1 - w - {w^2}} \right)^3} + {\left( {1 - w + {w^2}} \right)^3}$
Using $w + {w^2} = - 1$ in first term and $1 + {w^2} = - w$ in the second term
$
= {\left( {1 + 1} \right)^3} + {\left( { - w - w} \right)^3} \\
= {\left( 2 \right)^3}\left[ {1 - {w^3}} \right] \\
= {\left( 2 \right)^3}\left[ {1 - 1} \right] \\
= 0 \\
$
Note: Cube root of units means cube root of one. The roots are $w,{w^2},{w^3}( = 1)$ and the value of w is $\dfrac{{ - 1 + \sqrt 3 }}{2}$. We can also learn the properties of ${n^{th}}$ root of unity, which gives us a general formula for any root of unity. This basically means that finding the root of ${1^{\dfrac{1}{n}}}$. Most of the results are analogous to the cube root of unity and these results can be useful to solve complex problems.
Complete step by step solution:
In the above question, we are given that $w$ is the complex cube root of unity which mean ${w^3} = 1$
or can be written as $1 + w + {w^2} = 0$
Or we can use it as $1 + w = - {w^2}$ or $1 + {w^2} = - w$
Now, finding the
i. $w + \dfrac{1}{w}$ $ = \dfrac{{{w^2} + 1}}{w}$ (cross-multiplying)
$ = \dfrac{{ - w}}{w} = - 1$ (using the above written properties $1 + {w^2} = -
w$)
ii. ${w^2} + {w^3} + {w^4}$
taking common and then using the above property $1 + w + {w^2} = 0$
$ = {w^2}\left( {1 + w + {w^2}} \right)$
$ = 0$
iii. ${\left( {1 + {w^2}} \right)^3}$
Using the property $1 + {w^2} = - w$
$
= {\left( { - w} \right)^3} = - {w^3} \\
= - 1 \\
$ (using ${w^3} = 1$ )
iv. ${\left( {1 - w - {w^2}} \right)^3} + {\left( {1 - w + {w^2}} \right)^3}$
Using $w + {w^2} = - 1$ in first term and $1 + {w^2} = - w$ in the second term
$
= {\left( {1 + 1} \right)^3} + {\left( { - w - w} \right)^3} \\
= {\left( 2 \right)^3}\left[ {1 - {w^3}} \right] \\
= {\left( 2 \right)^3}\left[ {1 - 1} \right] \\
= 0 \\
$
Note: Cube root of units means cube root of one. The roots are $w,{w^2},{w^3}( = 1)$ and the value of w is $\dfrac{{ - 1 + \sqrt 3 }}{2}$. We can also learn the properties of ${n^{th}}$ root of unity, which gives us a general formula for any root of unity. This basically means that finding the root of ${1^{\dfrac{1}{n}}}$. Most of the results are analogous to the cube root of unity and these results can be useful to solve complex problems.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

