Answer
Verified
460.8k+ views
Hint: Here we are given an equation of degree four, thus having our roots. We will find the sum and product of roots in terms of coefficients of the equation to find desired results. For equation of degree four, \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\], sum of roots is given as –
$\alpha +\beta +\gamma +\delta =-\dfrac{b}{a}$ .
Product of roots is given as –
$\alpha \beta \gamma \delta =\dfrac{e}{a}$.
Also, $\alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =\dfrac{c}{a}$ and
$\alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-\dfrac{d}{a}$.
We will use these formulas for finding $\sum{{{\alpha }^{2}}\beta }$.
Complete step-by-step solution
Before applying direct formulas and jumping to answer, let us first understand the basic formulas for ${{n}^{th}}$ polynomial.
For a polynomial of degree $n$, let roots of equation are $\alpha ,{{\alpha }_{1}},{{\alpha }_{2}},...,{{\alpha }_{n}}$.
Equation in general form is given by –
$f\left( x \right)={{a}_{0}}{{x}^{n}}+{{a}_{1}}{{x}^{n-1}}+{{a}_{2}}{{x}^{n-2}}+...+{{a}_{n-1}}x+{{a}_{n}}=0$
Then,
Sum of roots, $\alpha +{{\alpha }_{1}}+{{\alpha }_{2}}+...+{{\alpha }_{n}}=\dfrac{-coefficient~~of~~{{x}^{n-1}}}{coefficient~~of~~{{x}^{n}}}$
Also, ${{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}...={{\left( -1 \right)}^{2}}\dfrac{coefficient~~of~~{{x}^{n-2}}}{coefficient~~of~~{{x}^{n}}}$
Similarly, other formulas are:-
${{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}+{{\alpha }_{2}}{{\alpha }_{3}}{{\alpha }_{4}}...={{\left( -1 \right)}^{3}}\dfrac{coefficient~~of~~{{x}^{n-3}}}{coefficient~~of~~{{x}^{n}}}$
\[{{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}{{\alpha }_{4}}...{{\alpha }_{n}}={{\left( -1 \right)}^{n}}\dfrac{constant~~term}{coefficient~~of~~{{x}^{n}}}\]
Comparing general formulas by the general equation of degree four, \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\] having roots $\alpha ,\beta ,\gamma ,\delta $ as roots:
\[\begin{align}
& \alpha +\beta +\gamma +\delta =-\dfrac{b}{a} \\
& \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =\dfrac{c}{a} \\
& \alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-\dfrac{d}{a} \\
& \alpha \beta \gamma \delta =\dfrac{e}{a} \\
\end{align}\]
We are given the equation, \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\]. Comparing with above formulas we get –
\[\begin{align}
& \alpha +\beta +\gamma +\delta =-a~~~~~~~~~~~~~~~~~~~~~~~~~~~~...\left( 1 \right) \\
& \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =b~~~~~...\left( 2 \right) \\
& \alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-c~~~~~~~~~~~~...\left( 3 \right) \\
& \alpha \beta \gamma \delta =e \\
\end{align}\]
On multiplying $\left( 1 \right)$ and $\left( 2 \right)$, we get –
\[\begin{align}
& \left( \alpha +\beta +\gamma +\delta \right)\left( \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta \right)=-ab \\
& \Rightarrow {{\alpha }^{2}}\beta +\alpha {{\beta }^{2}}+\alpha \beta \gamma +\alpha \beta \delta +\alpha \beta \gamma +{{\beta }^{2}}\gamma +\beta {{\gamma }^{2}}+\beta \gamma \delta +\alpha \gamma \delta +\beta \gamma \delta +{{\gamma }^{2}}\delta +\gamma {{\delta }^{2}}+ \\
& {{\alpha }^{2}}\gamma +\alpha \beta \gamma +\alpha {{\gamma }^{2}}+\alpha \gamma \delta +{{\alpha }^{2}}\delta +\alpha \beta \delta +\alpha \gamma \delta +\alpha {{\delta }^{2}}+\alpha \beta \delta +{{\beta }^{2}}\delta +\gamma \beta \delta +\beta {{\delta }^{2}}=-ab \\
\end{align}\]
Rearranging the terms, we get –
\[\begin{align}
& {{\alpha }^{2}}\beta +\alpha {{\beta }^{2}}+{{\beta }^{2}}\gamma +\beta {{\gamma }^{2}}+{{\gamma }^{2}}\delta +\gamma {{\delta }^{2}}+{{\alpha }^{2}}\gamma +\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\delta +\alpha {{\delta }^{2}}+{{\beta }^{2}}\delta +\beta {{\delta }^{2}}+ \\
& 3\left( \alpha \beta \gamma +\beta \gamma \delta +\alpha \beta \delta +\beta \gamma \delta \right)=-ab \\
\end{align}\]
We can write the first twelve terms by $\sum{{{\alpha }^{2}}\beta }$. Hence we get –
$\sum{{{\alpha }^{2}}\beta }+3\left( \alpha \beta \gamma +\beta \gamma \delta +\alpha \beta \delta +\beta \gamma \delta \right)=-ab$
From equation (3), we can clearly see that we can directly put the value of $-c$ in above equation. We get –
\[\begin{align}
& \sum{{{\alpha }^{2}}\beta }-3c=-ab \\
& \Rightarrow \sum{{{\alpha }^{2}}\beta }=3c-ab \\
\end{align}\]
Hence, we have found our required answer, which is, \[\sum{{{\alpha }^{2}}\beta }=3c-ab\].
Note: Students should take care of signs the most. Mistakes can be made while taking positive or negative coefficients. Easy way to remember the product of roots is that we take the positive value of the coefficient of the constant term in even polynomials and the negative value of the coefficient of the constant term in odd polynomials. As there are a lot of terms in the equation, students should do it carefully and do not skip any term. Always remember, we can check it by looking at the symmetry of terms.
$\alpha +\beta +\gamma +\delta =-\dfrac{b}{a}$ .
Product of roots is given as –
$\alpha \beta \gamma \delta =\dfrac{e}{a}$.
Also, $\alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =\dfrac{c}{a}$ and
$\alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-\dfrac{d}{a}$.
We will use these formulas for finding $\sum{{{\alpha }^{2}}\beta }$.
Complete step-by-step solution
Before applying direct formulas and jumping to answer, let us first understand the basic formulas for ${{n}^{th}}$ polynomial.
For a polynomial of degree $n$, let roots of equation are $\alpha ,{{\alpha }_{1}},{{\alpha }_{2}},...,{{\alpha }_{n}}$.
Equation in general form is given by –
$f\left( x \right)={{a}_{0}}{{x}^{n}}+{{a}_{1}}{{x}^{n-1}}+{{a}_{2}}{{x}^{n-2}}+...+{{a}_{n-1}}x+{{a}_{n}}=0$
Then,
Sum of roots, $\alpha +{{\alpha }_{1}}+{{\alpha }_{2}}+...+{{\alpha }_{n}}=\dfrac{-coefficient~~of~~{{x}^{n-1}}}{coefficient~~of~~{{x}^{n}}}$
Also, ${{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{1}}{{\alpha }_{3}}...={{\left( -1 \right)}^{2}}\dfrac{coefficient~~of~~{{x}^{n-2}}}{coefficient~~of~~{{x}^{n}}}$
Similarly, other formulas are:-
${{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}+{{\alpha }_{2}}{{\alpha }_{3}}{{\alpha }_{4}}...={{\left( -1 \right)}^{3}}\dfrac{coefficient~~of~~{{x}^{n-3}}}{coefficient~~of~~{{x}^{n}}}$
\[{{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}{{\alpha }_{4}}...{{\alpha }_{n}}={{\left( -1 \right)}^{n}}\dfrac{constant~~term}{coefficient~~of~~{{x}^{n}}}\]
Comparing general formulas by the general equation of degree four, \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\] having roots $\alpha ,\beta ,\gamma ,\delta $ as roots:
\[\begin{align}
& \alpha +\beta +\gamma +\delta =-\dfrac{b}{a} \\
& \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =\dfrac{c}{a} \\
& \alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-\dfrac{d}{a} \\
& \alpha \beta \gamma \delta =\dfrac{e}{a} \\
\end{align}\]
We are given the equation, \[{{x}^{4}}+a{{x}^{3}}+b{{x}^{2}}+cx+d+e=0\]. Comparing with above formulas we get –
\[\begin{align}
& \alpha +\beta +\gamma +\delta =-a~~~~~~~~~~~~~~~~~~~~~~~~~~~~...\left( 1 \right) \\
& \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta =b~~~~~...\left( 2 \right) \\
& \alpha \beta \gamma +\alpha \gamma \delta +\alpha \beta \delta +\gamma \beta \delta =-c~~~~~~~~~~~~...\left( 3 \right) \\
& \alpha \beta \gamma \delta =e \\
\end{align}\]
On multiplying $\left( 1 \right)$ and $\left( 2 \right)$, we get –
\[\begin{align}
& \left( \alpha +\beta +\gamma +\delta \right)\left( \alpha \beta +\beta \gamma +\gamma \delta +\alpha \gamma +\alpha \delta +\beta \delta \right)=-ab \\
& \Rightarrow {{\alpha }^{2}}\beta +\alpha {{\beta }^{2}}+\alpha \beta \gamma +\alpha \beta \delta +\alpha \beta \gamma +{{\beta }^{2}}\gamma +\beta {{\gamma }^{2}}+\beta \gamma \delta +\alpha \gamma \delta +\beta \gamma \delta +{{\gamma }^{2}}\delta +\gamma {{\delta }^{2}}+ \\
& {{\alpha }^{2}}\gamma +\alpha \beta \gamma +\alpha {{\gamma }^{2}}+\alpha \gamma \delta +{{\alpha }^{2}}\delta +\alpha \beta \delta +\alpha \gamma \delta +\alpha {{\delta }^{2}}+\alpha \beta \delta +{{\beta }^{2}}\delta +\gamma \beta \delta +\beta {{\delta }^{2}}=-ab \\
\end{align}\]
Rearranging the terms, we get –
\[\begin{align}
& {{\alpha }^{2}}\beta +\alpha {{\beta }^{2}}+{{\beta }^{2}}\gamma +\beta {{\gamma }^{2}}+{{\gamma }^{2}}\delta +\gamma {{\delta }^{2}}+{{\alpha }^{2}}\gamma +\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\delta +\alpha {{\delta }^{2}}+{{\beta }^{2}}\delta +\beta {{\delta }^{2}}+ \\
& 3\left( \alpha \beta \gamma +\beta \gamma \delta +\alpha \beta \delta +\beta \gamma \delta \right)=-ab \\
\end{align}\]
We can write the first twelve terms by $\sum{{{\alpha }^{2}}\beta }$. Hence we get –
$\sum{{{\alpha }^{2}}\beta }+3\left( \alpha \beta \gamma +\beta \gamma \delta +\alpha \beta \delta +\beta \gamma \delta \right)=-ab$
From equation (3), we can clearly see that we can directly put the value of $-c$ in above equation. We get –
\[\begin{align}
& \sum{{{\alpha }^{2}}\beta }-3c=-ab \\
& \Rightarrow \sum{{{\alpha }^{2}}\beta }=3c-ab \\
\end{align}\]
Hence, we have found our required answer, which is, \[\sum{{{\alpha }^{2}}\beta }=3c-ab\].
Note: Students should take care of signs the most. Mistakes can be made while taking positive or negative coefficients. Easy way to remember the product of roots is that we take the positive value of the coefficient of the constant term in even polynomials and the negative value of the coefficient of the constant term in odd polynomials. As there are a lot of terms in the equation, students should do it carefully and do not skip any term. Always remember, we can check it by looking at the symmetry of terms.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE