
If we have an expession as ${{20}^{3-2{{x}^{2}}}}={{\left( 40\sqrt{5} \right)}^{3{{x}^{2}}-2}}$ , then the value of x is
(a) $\pm \sqrt{\dfrac{13}{2}}$
(b) $\pm \sqrt{\dfrac{12}{13}}$
(c) $\pm \sqrt{\dfrac{4}{5}}$
(d) $\pm \sqrt{\dfrac{5}{4}}$
Answer
592.2k+ views
Hint: In order to solve this problem, we need to make the base common as we can see that the unknown is in the power. By making the base common we can directly equate the powers and solve for x.
Complete step-by-step solution:
We are given expression with x as the unknown.
We need to find the value of x.
As we can see in the expression there are two different bases in the left-hand side and the right-hand side.
As our unknown is in the power, we need to make the base common in order to equate the powers.
Therefore, let's make the power to 20 on both sides.
The expression looks as follows,
${{20}^{3-2{{x}^{2}}}}={{\left( 40\sqrt{5} \right)}^{3{{x}^{2}}-2}}$
Let's take the 40 from the right-hand side inside the bracket.
For that we need to square the 40, the square of 40 is 1600.
Hence, substituting we get,
${{20}^{3-2{{x}^{2}}}}={{\left( \sqrt{1600\times 5} \right)}^{3{{x}^{2}}-2}}$
Solving we get,
${{20}^{3-2{{x}^{2}}}}={{\left( \sqrt{8000} \right)}^{3{{x}^{2}}-2}}$
But now we can see that 8000 is the cube of 20.
So we can replace 8000 by ${{20}^{3}}$, and we can replace the square root by $\dfrac{1}{2}$ in the power.
Substituting we get,
${{20}^{3-2{{x}^{2}}}}={{20}^{\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)}}$
Now, we can directly equate the powers with each other as base are the same on both sides.
Hence, equating the powers we get,
$3-2{{x}^{2}}=\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)$
Solving this for x we get,
$\begin{align}
& 2\left( 3-2{{x}^{2}} \right)=3\left( 3{{x}^{2}}-2 \right) \\
& 6-4{{x}^{2}}=9{{x}^{2}}-6 \\
& 13{{x}^{2}}=12 \\
& {{x}^{2}}=\dfrac{12}{13} \\
\end{align}$
Taking the square root we get,
$x=\pm \sqrt{\dfrac{12}{13}}$
Hence, the correct option is (b).
Note: We can also do this question with a different approach. We can take the log on both sides and arrive at the same equation. It can be shown as follows,
Taking log on both sides we get,
$\ln \left( {{20}^{3-2{{x}^{2}}}} \right)=\ln \left( {{20}^{\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)}} \right)$
Now, we can use the property that $\ln \left( {{a}^{b}} \right)=a\ln b$ , we get,
$\begin{align}
& \left( 3-2{{x}^{2}} \right)\ln \left( 20 \right)=\left( \dfrac{3}{2}\left( 3{{x}^{2}}-2 \right) \right)\ln \left( 20 \right) \\
& \left( 3-2{{x}^{2}} \right)=\left( \dfrac{3}{2}\left( 3{{x}^{2}}-2 \right) \right) \\
\end{align}$
Hence, we can see that we arrive at the same position.
Complete step-by-step solution:
We are given expression with x as the unknown.
We need to find the value of x.
As we can see in the expression there are two different bases in the left-hand side and the right-hand side.
As our unknown is in the power, we need to make the base common in order to equate the powers.
Therefore, let's make the power to 20 on both sides.
The expression looks as follows,
${{20}^{3-2{{x}^{2}}}}={{\left( 40\sqrt{5} \right)}^{3{{x}^{2}}-2}}$
Let's take the 40 from the right-hand side inside the bracket.
For that we need to square the 40, the square of 40 is 1600.
Hence, substituting we get,
${{20}^{3-2{{x}^{2}}}}={{\left( \sqrt{1600\times 5} \right)}^{3{{x}^{2}}-2}}$
Solving we get,
${{20}^{3-2{{x}^{2}}}}={{\left( \sqrt{8000} \right)}^{3{{x}^{2}}-2}}$
But now we can see that 8000 is the cube of 20.
So we can replace 8000 by ${{20}^{3}}$, and we can replace the square root by $\dfrac{1}{2}$ in the power.
Substituting we get,
${{20}^{3-2{{x}^{2}}}}={{20}^{\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)}}$
Now, we can directly equate the powers with each other as base are the same on both sides.
Hence, equating the powers we get,
$3-2{{x}^{2}}=\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)$
Solving this for x we get,
$\begin{align}
& 2\left( 3-2{{x}^{2}} \right)=3\left( 3{{x}^{2}}-2 \right) \\
& 6-4{{x}^{2}}=9{{x}^{2}}-6 \\
& 13{{x}^{2}}=12 \\
& {{x}^{2}}=\dfrac{12}{13} \\
\end{align}$
Taking the square root we get,
$x=\pm \sqrt{\dfrac{12}{13}}$
Hence, the correct option is (b).
Note: We can also do this question with a different approach. We can take the log on both sides and arrive at the same equation. It can be shown as follows,
Taking log on both sides we get,
$\ln \left( {{20}^{3-2{{x}^{2}}}} \right)=\ln \left( {{20}^{\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)}} \right)$
Now, we can use the property that $\ln \left( {{a}^{b}} \right)=a\ln b$ , we get,
$\begin{align}
& \left( 3-2{{x}^{2}} \right)\ln \left( 20 \right)=\left( \dfrac{3}{2}\left( 3{{x}^{2}}-2 \right) \right)\ln \left( 20 \right) \\
& \left( 3-2{{x}^{2}} \right)=\left( \dfrac{3}{2}\left( 3{{x}^{2}}-2 \right) \right) \\
\end{align}$
Hence, we can see that we arrive at the same position.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

