
If we have the binomial coefficient as \[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=3:4:5\] , then the value of \[2n+3r\] is
(A) 238
(B) 220
(C) 203
(D) 240
Answer
558.3k+ views
Hint: First of all, split the ratio as \[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}=3:4\] and \[^{n}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=4:5\] . Now, use the formula \[^{n}{{C}_{r}}\] , \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] and modify the ratios. We can write \[\left( r+1 \right)!\] as a product of \[r!\] and \[\left( r+1 \right)\] . Similarly, \[\left( n-r \right)!\] can be written as a product of \[\left( n-r-1 \right)!\] and \[\left( n-r \right)\]. Now, solve it further and get the value of \[n\] and \[r\] . Using the value of \[n\] and \[r\] calculate the value of \[2n+3r\].
Complete step-by-step solution
According to the question, we are given that
\[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=3:4:5\] ……………………………….(1)
Let us split the above ratio.
On splitting, we get
\[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}=3:4\] ……………………………………(2)
\[^{n}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=4:5\] ………………………………………….(3)
We know the formula for \[^{n}{{C}_{r}}\] , \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] …………………………………….(4)
Now, applying the formula shown in equation (4) and on simplifying equation (2), we get
\[\begin{align}
& \Rightarrow \dfrac{^{n}{{C}_{r}}}{^{n}{{C}_{r+1}}}=\dfrac{3}{4} \\
& \Rightarrow \dfrac{\dfrac{n!}{r!\left( n-r \right)!}}{\dfrac{n!}{\left( r+1 \right)!\left( n-r-1 \right)!}}=\dfrac{3}{4} \\
\end{align}\]
……………………………………(5)
The above equation needs to be more simplified.
We can write \[\left( r+1 \right)!\] as product of \[r!\] and \[\left( r+1 \right)\] ………………………………..(6)
Similarly, \[\left( n-r \right)!\] can be written as product of \[\left( n-r-1 \right)!\] and \[\left( n-r \right)\] ……………………………………(7)
Now, from equation (5), equation (6), and equation (7), we get
\[\begin{align}
& \Rightarrow \dfrac{r!\left( r+1 \right)\left( n-r-1 \right)!}{r!\left( n-r-1 \right)!\left( n-r \right)}=\dfrac{3}{4} \\
& \Rightarrow \dfrac{\left( r+1 \right)}{\left( n-r \right)}=\dfrac{3}{4} \\
& \Rightarrow 4r+4=3n-3r \\
& \Rightarrow 4r+3r=3n-4 \\
\end{align}\]
\[\Rightarrow 7r=3n-4\] …………………………………(8)
Similarly, applying the formula shown in equation (4) and on simplifying equation (3), we get
\[\begin{align}
& \Rightarrow \dfrac{^{n}{{C}_{r+1}}}{^{n}{{C}_{r+2}}}=\dfrac{4}{5} \\
& \Rightarrow \dfrac{\dfrac{n!}{\left( r+1 \right)!\left( n-r-1 \right)!}}{\dfrac{n!}{\left( r+2 \right)!\left( n-r-2 \right)!}}=\dfrac{4}{5} \\
\end{align}\]
\[\Rightarrow \dfrac{\left( r+2 \right)!\left( n-r-2 \right)!}{\left( r+1 \right)!\left( n-r-1 \right)!}=\dfrac{4}{5}\] ……………………………………(9)
The above equation needs to be more simplified.
We can write \[\left( r+2 \right)!\] as product of \[\left( r+1 \right)!\] and \[\left( r+2 \right)\] ………………………………..(10)
Similarly, \[\left( n-r-1 \right)!\] can be written as product of \[\left( n-r-2 \right)!\] and \[\left( n-r-1 \right)\] ……………………………………(11)
Now, from equation (9), equation (10), and equation (11), we get
\[\begin{align}
& \Rightarrow \dfrac{\left( r+1 \right)!\left( r+2 \right)\left( n-r-2 \right)!}{\left( r+1 \right)!\left( n-r-2 \right)!\left( n-r-1 \right)}=\dfrac{4}{5} \\
& \Rightarrow \dfrac{\left( r+2 \right)}{\left( n-r-1 \right)}=\dfrac{4}{5} \\
& \Rightarrow 5r+10=4n-4r-4 \\
& \Rightarrow 5r+4r=4n-4-10 \\
\end{align}\]
\[\Rightarrow 9r=4n-14\] …………………………………(12)
On multiplying equation (8) by 9, we get
\[\Rightarrow 7r\times 9=\left( 3n-4 \right)\times 9\]
\[\Rightarrow 63r=27n-36\]…………………………………………………..(13)
On multiplying equation (12) by 7, we get
\[\Rightarrow 9r\times 7=\left( 4n-14 \right)\times 7\]
\[\Rightarrow 63r=28n-98\] ………………………………………………….(14)
Similarly, on subtracting equation (13) from equation (14), we get
\[\begin{align}
& \Rightarrow 63r-63r=28n-98-\left( 27n-36 \right) \\
& \Rightarrow 0=28n-98-27n+36 \\
& \Rightarrow 0=n-62 \\
\end{align}\]
\[\Rightarrow 62=n\] …………………………………………(15)
On putting \[n=62\] in equation (12), we get
\[\begin{align}
& \Rightarrow 9r=4\times 62-14 \\
& \Rightarrow 9r=234 \\
& \Rightarrow r=\dfrac{234}{9} \\
\end{align}\]
\[\Rightarrow r=26\] ………………………………………(16)
We are asked to find the value of \[2n+3r\] ……………………………….(17)
Now, from equation (15), equation (16), and equation (17), we get
\[\begin{align}
& =2\times 62+3\times 62 \\
& =124+186 \\
& =310 \\
\end{align}\]
Therefore, the value of \[2n+3r\] is 310.
Note: For this type of question, where we have some expression in terms of \[^{n}{{C}_{r}}\] . The best way to approach this type of question is to follow the basic formula for \[^{n}{{C}_{r}}\] , \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] . Use this formula and modify the expression to simplify it into simpler form.
Complete step-by-step solution
According to the question, we are given that
\[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=3:4:5\] ……………………………….(1)
Let us split the above ratio.
On splitting, we get
\[^{n}{{C}_{r}}{{:}^{n}}{{C}_{r+1}}=3:4\] ……………………………………(2)
\[^{n}{{C}_{r+1}}{{:}^{n}}{{C}_{r+2}}=4:5\] ………………………………………….(3)
We know the formula for \[^{n}{{C}_{r}}\] , \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] …………………………………….(4)
Now, applying the formula shown in equation (4) and on simplifying equation (2), we get
\[\begin{align}
& \Rightarrow \dfrac{^{n}{{C}_{r}}}{^{n}{{C}_{r+1}}}=\dfrac{3}{4} \\
& \Rightarrow \dfrac{\dfrac{n!}{r!\left( n-r \right)!}}{\dfrac{n!}{\left( r+1 \right)!\left( n-r-1 \right)!}}=\dfrac{3}{4} \\
\end{align}\]
……………………………………(5)
The above equation needs to be more simplified.
We can write \[\left( r+1 \right)!\] as product of \[r!\] and \[\left( r+1 \right)\] ………………………………..(6)
Similarly, \[\left( n-r \right)!\] can be written as product of \[\left( n-r-1 \right)!\] and \[\left( n-r \right)\] ……………………………………(7)
Now, from equation (5), equation (6), and equation (7), we get
\[\begin{align}
& \Rightarrow \dfrac{r!\left( r+1 \right)\left( n-r-1 \right)!}{r!\left( n-r-1 \right)!\left( n-r \right)}=\dfrac{3}{4} \\
& \Rightarrow \dfrac{\left( r+1 \right)}{\left( n-r \right)}=\dfrac{3}{4} \\
& \Rightarrow 4r+4=3n-3r \\
& \Rightarrow 4r+3r=3n-4 \\
\end{align}\]
\[\Rightarrow 7r=3n-4\] …………………………………(8)
Similarly, applying the formula shown in equation (4) and on simplifying equation (3), we get
\[\begin{align}
& \Rightarrow \dfrac{^{n}{{C}_{r+1}}}{^{n}{{C}_{r+2}}}=\dfrac{4}{5} \\
& \Rightarrow \dfrac{\dfrac{n!}{\left( r+1 \right)!\left( n-r-1 \right)!}}{\dfrac{n!}{\left( r+2 \right)!\left( n-r-2 \right)!}}=\dfrac{4}{5} \\
\end{align}\]
\[\Rightarrow \dfrac{\left( r+2 \right)!\left( n-r-2 \right)!}{\left( r+1 \right)!\left( n-r-1 \right)!}=\dfrac{4}{5}\] ……………………………………(9)
The above equation needs to be more simplified.
We can write \[\left( r+2 \right)!\] as product of \[\left( r+1 \right)!\] and \[\left( r+2 \right)\] ………………………………..(10)
Similarly, \[\left( n-r-1 \right)!\] can be written as product of \[\left( n-r-2 \right)!\] and \[\left( n-r-1 \right)\] ……………………………………(11)
Now, from equation (9), equation (10), and equation (11), we get
\[\begin{align}
& \Rightarrow \dfrac{\left( r+1 \right)!\left( r+2 \right)\left( n-r-2 \right)!}{\left( r+1 \right)!\left( n-r-2 \right)!\left( n-r-1 \right)}=\dfrac{4}{5} \\
& \Rightarrow \dfrac{\left( r+2 \right)}{\left( n-r-1 \right)}=\dfrac{4}{5} \\
& \Rightarrow 5r+10=4n-4r-4 \\
& \Rightarrow 5r+4r=4n-4-10 \\
\end{align}\]
\[\Rightarrow 9r=4n-14\] …………………………………(12)
On multiplying equation (8) by 9, we get
\[\Rightarrow 7r\times 9=\left( 3n-4 \right)\times 9\]
\[\Rightarrow 63r=27n-36\]…………………………………………………..(13)
On multiplying equation (12) by 7, we get
\[\Rightarrow 9r\times 7=\left( 4n-14 \right)\times 7\]
\[\Rightarrow 63r=28n-98\] ………………………………………………….(14)
Similarly, on subtracting equation (13) from equation (14), we get
\[\begin{align}
& \Rightarrow 63r-63r=28n-98-\left( 27n-36 \right) \\
& \Rightarrow 0=28n-98-27n+36 \\
& \Rightarrow 0=n-62 \\
\end{align}\]
\[\Rightarrow 62=n\] …………………………………………(15)
On putting \[n=62\] in equation (12), we get
\[\begin{align}
& \Rightarrow 9r=4\times 62-14 \\
& \Rightarrow 9r=234 \\
& \Rightarrow r=\dfrac{234}{9} \\
\end{align}\]
\[\Rightarrow r=26\] ………………………………………(16)
We are asked to find the value of \[2n+3r\] ……………………………….(17)
Now, from equation (15), equation (16), and equation (17), we get
\[\begin{align}
& =2\times 62+3\times 62 \\
& =124+186 \\
& =310 \\
\end{align}\]
Therefore, the value of \[2n+3r\] is 310.
Note: For this type of question, where we have some expression in terms of \[^{n}{{C}_{r}}\] . The best way to approach this type of question is to follow the basic formula for \[^{n}{{C}_{r}}\] , \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\] . Use this formula and modify the expression to simplify it into simpler form.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

