
If \[x + y = \dfrac{7}{2}\] and \[xy = \dfrac{5}{2}\], find the value of:
(a) \[x - y\]
(b) \[{x^2} - {y^2}\]
Answer
482.1k+ views
Hint: Here, we have to find the value of \[x - y\] and \[{x^2} - {y^2}\]. We will use the algebraic identity for the sum of two numbers to find the sum of squares of \[x\] and \[y\]. Then, using the algebraic identity for the square of difference of two numbers, we will find the value of \[x - y\]. Finally, using the algebraic identity for the product of the sum and difference of two numbers, we will find the value of \[{x^2} - {y^2}\].
Formula Used: The square of the sum of two numbers \[a\] and \[b\] is given by the algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\].
The square of the difference of two numbers \[a\] and \[b\] is given by the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\].
The product of the sum and difference of two numbers \[a\] and \[b\] is given by the algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\].
Complete step-by-step answer:
(a)
We know that the square of the sum of two numbers \[a\] and \[b\] is given by the algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\].
Using the algebraic identity, we get the square of the sum of the numbers \[x\] and \[y\] as
\[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\]
Substituting \[x + y = \dfrac{7}{2}\] and \[xy = \dfrac{5}{2}\] in the equation, we get
\[ \Rightarrow {\left( {\dfrac{7}{2}} \right)^2} = {x^2} + {y^2} + 2\left( {\dfrac{5}{2}} \right)\]
Simplifying the expression, we get
\[ \Rightarrow \dfrac{{49}}{4} = {x^2} + {y^2} + 5\]
Subtracting 5 from both sides, we get
\[\begin{array}{l} \Rightarrow \dfrac{{49}}{4} - 5 = {x^2} + {y^2} + 5 - 5\\ \Rightarrow \dfrac{{49 - 20}}{4} = {x^2} + {y^2}\\ \Rightarrow \dfrac{{29}}{4} = {x^2} + {y^2}\end{array}\]
Using the algebraic identity, we get the square of the difference of the numbers \[x\] and \[y\] as
\[{\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy\]
Substituting \[{x^2} + {y^2} = \dfrac{{29}}{4}\] and \[xy = \dfrac{5}{2}\] in the equation, we get
\[ \Rightarrow {\left( {x - y} \right)^2} = \dfrac{{29}}{4} - 2\left( {\dfrac{5}{2}} \right)\]
Simplifying the equation, we get
\[ \Rightarrow {\left( {x - y} \right)^2} = \dfrac{{29}}{4} - 5\]
Subtracting the terms of the expression, we get
\[\begin{array}{l} \Rightarrow {\left( {x - y} \right)^2} = \dfrac{{29 - 20}}{4}\\ \Rightarrow {\left( {x - y} \right)^2} = \dfrac{9}{4}\end{array}\]
Applying the square root of both sides, we get
\[ \Rightarrow x - y = \sqrt {\dfrac{9}{4}} = \dfrac{3}{2}\]
Therefore, the value of \[x - y\] is \[\dfrac{3}{2}\].
(b)
We will use the algebraic identity for the product of the sum and difference of two numbers to find the value of \[{x^2} - {y^2}\].
We know that the product of the sum and difference of two numbers \[a\] and \[b\] is given by the algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\].
Using the algebraic identity, we get the product of the sum and difference of the numbers \[x\] and \[y\] as
\[{x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)\]
Substituting \[x + y = \dfrac{7}{2}\] and \[x - y = \dfrac{3}{2}\] in the equation, we get
\[ \Rightarrow {x^2} - {y^2} = \left( {\dfrac{7}{2}} \right)\left( {\dfrac{3}{2}} \right)\]
Multiplying the terms of the expression, we get
\[ \Rightarrow {x^2} - {y^2} = \dfrac{{21}}{4}\]
Therefore, the value of \[{x^2} - {y^2}\] is \[\dfrac{{21}}{4}\].
Note: We have assumed that \[x > y\]. The answer will be different if \[x < y\].
Taking the square root of both sides \[{\left( {x - y} \right)^2} = \dfrac{9}{4}\], we get
\[\begin{array}{l} \Rightarrow x - y = - \sqrt {\dfrac{9}{4}} \\ \Rightarrow x - y = - \dfrac{3}{2}\end{array}\]
The negative sign is taken because it is assumed that \[x < y\].
Substituting \[x + y = \dfrac{7}{2}\] and \[x - y = - \dfrac{3}{2}\] in the equation \[{x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)\], we get
\[ \Rightarrow {x^2} - {y^2} = \left( {\dfrac{7}{2}} \right)\left( { - \dfrac{3}{2}} \right)\]
Multiplying the terms of the expression, we get
\[ \Rightarrow {x^2} - {y^2} = - \dfrac{{21}}{4}\]
Therefore, if \[x < y\], then the values of \[x - y\] and \[{x^2} - {y^2}\] will be \[ - \dfrac{3}{2}\] and \[ - \dfrac{{21}}{4}\] respectively.
Formula Used: The square of the sum of two numbers \[a\] and \[b\] is given by the algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\].
The square of the difference of two numbers \[a\] and \[b\] is given by the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\].
The product of the sum and difference of two numbers \[a\] and \[b\] is given by the algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\].
Complete step-by-step answer:
(a)
We know that the square of the sum of two numbers \[a\] and \[b\] is given by the algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\].
Using the algebraic identity, we get the square of the sum of the numbers \[x\] and \[y\] as
\[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\]
Substituting \[x + y = \dfrac{7}{2}\] and \[xy = \dfrac{5}{2}\] in the equation, we get
\[ \Rightarrow {\left( {\dfrac{7}{2}} \right)^2} = {x^2} + {y^2} + 2\left( {\dfrac{5}{2}} \right)\]
Simplifying the expression, we get
\[ \Rightarrow \dfrac{{49}}{4} = {x^2} + {y^2} + 5\]
Subtracting 5 from both sides, we get
\[\begin{array}{l} \Rightarrow \dfrac{{49}}{4} - 5 = {x^2} + {y^2} + 5 - 5\\ \Rightarrow \dfrac{{49 - 20}}{4} = {x^2} + {y^2}\\ \Rightarrow \dfrac{{29}}{4} = {x^2} + {y^2}\end{array}\]
Using the algebraic identity, we get the square of the difference of the numbers \[x\] and \[y\] as
\[{\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy\]
Substituting \[{x^2} + {y^2} = \dfrac{{29}}{4}\] and \[xy = \dfrac{5}{2}\] in the equation, we get
\[ \Rightarrow {\left( {x - y} \right)^2} = \dfrac{{29}}{4} - 2\left( {\dfrac{5}{2}} \right)\]
Simplifying the equation, we get
\[ \Rightarrow {\left( {x - y} \right)^2} = \dfrac{{29}}{4} - 5\]
Subtracting the terms of the expression, we get
\[\begin{array}{l} \Rightarrow {\left( {x - y} \right)^2} = \dfrac{{29 - 20}}{4}\\ \Rightarrow {\left( {x - y} \right)^2} = \dfrac{9}{4}\end{array}\]
Applying the square root of both sides, we get
\[ \Rightarrow x - y = \sqrt {\dfrac{9}{4}} = \dfrac{3}{2}\]
Therefore, the value of \[x - y\] is \[\dfrac{3}{2}\].
(b)
We will use the algebraic identity for the product of the sum and difference of two numbers to find the value of \[{x^2} - {y^2}\].
We know that the product of the sum and difference of two numbers \[a\] and \[b\] is given by the algebraic identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\].
Using the algebraic identity, we get the product of the sum and difference of the numbers \[x\] and \[y\] as
\[{x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)\]
Substituting \[x + y = \dfrac{7}{2}\] and \[x - y = \dfrac{3}{2}\] in the equation, we get
\[ \Rightarrow {x^2} - {y^2} = \left( {\dfrac{7}{2}} \right)\left( {\dfrac{3}{2}} \right)\]
Multiplying the terms of the expression, we get
\[ \Rightarrow {x^2} - {y^2} = \dfrac{{21}}{4}\]
Therefore, the value of \[{x^2} - {y^2}\] is \[\dfrac{{21}}{4}\].
Note: We have assumed that \[x > y\]. The answer will be different if \[x < y\].
Taking the square root of both sides \[{\left( {x - y} \right)^2} = \dfrac{9}{4}\], we get
\[\begin{array}{l} \Rightarrow x - y = - \sqrt {\dfrac{9}{4}} \\ \Rightarrow x - y = - \dfrac{3}{2}\end{array}\]
The negative sign is taken because it is assumed that \[x < y\].
Substituting \[x + y = \dfrac{7}{2}\] and \[x - y = - \dfrac{3}{2}\] in the equation \[{x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)\], we get
\[ \Rightarrow {x^2} - {y^2} = \left( {\dfrac{7}{2}} \right)\left( { - \dfrac{3}{2}} \right)\]
Multiplying the terms of the expression, we get
\[ \Rightarrow {x^2} - {y^2} = - \dfrac{{21}}{4}\]
Therefore, if \[x < y\], then the values of \[x - y\] and \[{x^2} - {y^2}\] will be \[ - \dfrac{3}{2}\] and \[ - \dfrac{{21}}{4}\] respectively.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
On which river Salal project is situated A River Sutlej class 8 social science CBSE

When Sambhaji Maharaj died a 11 February 1689 b 11 class 8 social science CBSE

Explain the system of Dual Government class 8 social science CBSE

What is Kayal in Geography class 8 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Sketch larynx and explain its function in your own class 8 physics CBSE
