Answer
Verified
500.1k+ views
Hint- Use the property of addition of multiple logarithm terms followed by converting that into a form of a progression to ease the simplification.
Its been given that for $x > 0$,
${\log _2}x + {\log _2}\left( {\sqrt x } \right) + {\log _2}\left( {^4\sqrt x } \right) + \log \left( {^8\sqrt x } \right) + ..................\infty = 4$
Now using the logarithm property that is $\log A + \log B + \log C......... = \log (ABC..............)$
We can write above expression as
${\log _2}(x\left( {\sqrt x } \right)\left( {^4\sqrt x } \right)\left( {^8\sqrt x } \right)..................\infty ) = 4$
Writing in terms of powers, we have
${\log _2}\left[ {x \times {x^{\dfrac{1}{2}}} \times {x^{\dfrac{1}{4}}} \times {x^{\dfrac{1}{8}}}.................\infty } \right] = 4$
Using property of power addition we have
${\log _2}\left[ {{x^{1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ..............\infty }}} \right] = 4$
Now clearly the power of x is forming a Geometric Progression with first term as $1$ and common ratio as $\dfrac{1}{2}$ and also it is an $\infty $ GP.
We know that the sum of an infinite GP is $\dfrac{a}{{1 - r}}$ where $a$ is first term and $r$ is common ratio.
So, we have
${\log _2}{x^{\dfrac{1}{{1 - \left( {\dfrac{1}{2}} \right)}}}} = {\log _2}{x^2} = 4$
Now we have,
${\log _2}{x^2} = 4$
Using the property of logarithm that is ${\log _a}b = p \Rightarrow b = {a^p}$
We get ${x^2} = {2^4} = 16$
$\therefore x = \pm 4$
But since the domain of log is always a number greater than 0 hence $x$ can’t be equal to $-4$, so $x = 4$ is the only right answer.
Hence, option(c) is correct.
Note - In these types of problems, try to simplify the given expression using properties of logarithmic expressions. The simplification is followed by identifying some property of the infinite series i.e. geometric progression in this case and the rest is solved using G.P. formulas.
Its been given that for $x > 0$,
${\log _2}x + {\log _2}\left( {\sqrt x } \right) + {\log _2}\left( {^4\sqrt x } \right) + \log \left( {^8\sqrt x } \right) + ..................\infty = 4$
Now using the logarithm property that is $\log A + \log B + \log C......... = \log (ABC..............)$
We can write above expression as
${\log _2}(x\left( {\sqrt x } \right)\left( {^4\sqrt x } \right)\left( {^8\sqrt x } \right)..................\infty ) = 4$
Writing in terms of powers, we have
${\log _2}\left[ {x \times {x^{\dfrac{1}{2}}} \times {x^{\dfrac{1}{4}}} \times {x^{\dfrac{1}{8}}}.................\infty } \right] = 4$
Using property of power addition we have
${\log _2}\left[ {{x^{1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ..............\infty }}} \right] = 4$
Now clearly the power of x is forming a Geometric Progression with first term as $1$ and common ratio as $\dfrac{1}{2}$ and also it is an $\infty $ GP.
We know that the sum of an infinite GP is $\dfrac{a}{{1 - r}}$ where $a$ is first term and $r$ is common ratio.
So, we have
${\log _2}{x^{\dfrac{1}{{1 - \left( {\dfrac{1}{2}} \right)}}}} = {\log _2}{x^2} = 4$
Now we have,
${\log _2}{x^2} = 4$
Using the property of logarithm that is ${\log _a}b = p \Rightarrow b = {a^p}$
We get ${x^2} = {2^4} = 16$
$\therefore x = \pm 4$
But since the domain of log is always a number greater than 0 hence $x$ can’t be equal to $-4$, so $x = 4$ is the only right answer.
Hence, option(c) is correct.
Note - In these types of problems, try to simplify the given expression using properties of logarithmic expressions. The simplification is followed by identifying some property of the infinite series i.e. geometric progression in this case and the rest is solved using G.P. formulas.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE