
If $x = a\left( {\cos 2t + 2t\sin 2t} \right)$ and $y = a\left( {\sin 2t - 2t\cos 2t} \right)$. Find the second order derivative.
Answer
577.8k+ views
Hint: The given pair equations are in the parameterized form where both dependent and independent variables are expressed in terms of a parameter $t$. Determine the parametric derivative of $x$ with respect to $t$ and derivative of $y$ with respect to $t$. Use the values of $\dfrac{{dx}}{{dt}}$ and $\dfrac{{dy}}{{dt}}$ obtained during the calculation to determine the value of $\dfrac{{{d^2}y}}{{d{x^2}}}$.
Complete step-by-step answer:
If $f\left( x \right)$ and $g\left( x \right)$ are two differentiable functions then by product rule,
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) + f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)$
The first given parametric equation is $x = a\left( {\cos 2t + 2t\sin 2t} \right)$.
Differentiating both sides with respect to $t$ using product rule if needed,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left[ {a\left( {\cos 2t + 2t\sin 2t} \right)} \right]\]
As $a$ is constant take it out because differentiation of constant is 0.
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - 2\sin 2t + 4t\cos 2t + 2\sin 2t} \right)\]
Simplify the expression,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = 4at\cos 2t\]..........….. (1)
The second given parametric equation is $y = a\left( {\sin 2t - 2t\cos 2t} \right)$.
Differentiating both sides with respect to $t$ using product rule if needed,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left[ {a\left( {\sin 2t - 2t\cos 2t} \right)} \right]\]
As $a$ is constant take it out because differentiation of constant is 0.
\[ \Rightarrow \dfrac{{dy}}{{dt}} = a\left( {2\cos 2t + 4t\sin 2t - 2\cos 2t} \right)\]
Simplify the expression,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = 4at\sin 2t\].........….. (2)
We know that,
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Substitute the values of $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$ obtained from equation (1) and (2),
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4at\sin 2t}}{{4at\cos 2t}}$
Cancel out the common terms,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \tan t$
Differentiate again with respect to $x$,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\tan 2t} \right)$
Use the formula $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{\dfrac{d}{{dt}}\left( {\tan t} \right)}}{{\dfrac{{dt}}{{dx}}}}$
Substitute the value of $\dfrac{{dx}}{{dt}}$ from equation (1),
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^2}t}}{{4at\cos t}}$
Substitute $\dfrac{1}{{\cos t}} = \sec t$,
$\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^3}t}}{{4at}}$
Hence, the second derivative is $\dfrac{{{{\sec }^3}t}}{{4at}}$.
Note: Parametric equations are used when an equation cannot be expressed either in implicit or explicit form. That is exactly why we can express $\dfrac{{dy}}{{dx}}$ in terms of $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$.
Complete step-by-step answer:
If $f\left( x \right)$ and $g\left( x \right)$ are two differentiable functions then by product rule,
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) + f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)$
The first given parametric equation is $x = a\left( {\cos 2t + 2t\sin 2t} \right)$.
Differentiating both sides with respect to $t$ using product rule if needed,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left[ {a\left( {\cos 2t + 2t\sin 2t} \right)} \right]\]
As $a$ is constant take it out because differentiation of constant is 0.
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - 2\sin 2t + 4t\cos 2t + 2\sin 2t} \right)\]
Simplify the expression,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = 4at\cos 2t\]..........….. (1)
The second given parametric equation is $y = a\left( {\sin 2t - 2t\cos 2t} \right)$.
Differentiating both sides with respect to $t$ using product rule if needed,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left[ {a\left( {\sin 2t - 2t\cos 2t} \right)} \right]\]
As $a$ is constant take it out because differentiation of constant is 0.
\[ \Rightarrow \dfrac{{dy}}{{dt}} = a\left( {2\cos 2t + 4t\sin 2t - 2\cos 2t} \right)\]
Simplify the expression,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = 4at\sin 2t\].........….. (2)
We know that,
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Substitute the values of $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$ obtained from equation (1) and (2),
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4at\sin 2t}}{{4at\cos 2t}}$
Cancel out the common terms,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \tan t$
Differentiate again with respect to $x$,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\tan 2t} \right)$
Use the formula $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{\dfrac{d}{{dt}}\left( {\tan t} \right)}}{{\dfrac{{dt}}{{dx}}}}$
Substitute the value of $\dfrac{{dx}}{{dt}}$ from equation (1),
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^2}t}}{{4at\cos t}}$
Substitute $\dfrac{1}{{\cos t}} = \sec t$,
$\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^3}t}}{{4at}}$
Hence, the second derivative is $\dfrac{{{{\sec }^3}t}}{{4at}}$.
Note: Parametric equations are used when an equation cannot be expressed either in implicit or explicit form. That is exactly why we can express $\dfrac{{dy}}{{dx}}$ in terms of $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

