
If $x = {a^{m + n}},y = {a^{n + l}},z = {a^{l + m}}$. Prove that ${x^m}{y^n}{z^l} = {x^n}{y^l}{z^m}$.
Answer
622.8k+ views
Hint: Estimate L.H.S and R.H.S separately, and use this property $\left( {{p^b} \cdot {p^c} \cdot {p^d} = {p^{b + c + d}}} \right)$
We have to prove ${x^m}{y^n}{z^l} = {x^n}{y^l}{z^m}$
Let’s take L.H.S which is ${x^m}{y^n}{z^l}..........\left( 1 \right)$
It is given that $x = {a^{m + n}},y = {a^{n + l}},z = {a^{l + m}}$
So, substitute these values in expression (1)
$
\Rightarrow {x^m}{y^n}{z^l} = {a^{\left( {m + n} \right)}}^m{a^{\left( {n + l} \right)n}}{a^{\left( {l + m} \right)l}} \\
{\text{ }} = {a^{{m^2} + nm}}{a^{{n^2} + nl}}{a^{{l^2} + ml}} \\
$
In the R.H.S. of the above equation, the base is the same that is $a$ and it is a product, hence the powers will add up.
$
\Rightarrow {x^m}{y^n}{z^l} = {a^{{m^2} + nm}}{a^{{n^2} + nl}}{a^{{l^2} + ml}} \\
{\text{ }} = {a^{{m^2} + {n^2} + {l^2} + lm + mn + nl}}.................\left( 2 \right) \\
{\text{ }} \\
$
Now let’s take R.H.S of the equation we have to prove, which is ${x^n}{y^l}{z^m}...........\left( 3 \right)$
It is given that $x = {a^{m + n}},y = {a^{n + l}},z = {a^{l + m}}$
So, substitute these values in expression (3)
$
\Rightarrow {x^n}{y^l}{z^m} = {a^{\left( {m + n} \right)}}^n{a^{\left( {n + l} \right)l}}{a^{\left( {l + m} \right)m}} \\
{\text{ }} = {a^{{n^2} + nm}}{a^{{l^2} + nl}}{a^{{m^2} + ml}} \\
$
In the R.H.S. of the above equation, the base is the same that is $a$ and it is a product, hence the powers will add up.
$
\Rightarrow {x^n}{y^l}{z^m} = {a^{{n^2} + nm}}{a^{{l^2} + nl}}{a^{{m^2} + ml}} \\
{\text{ }} = {a^{{m^2} + {n^2} + {l^2} + lm + mn + nl}}.................\left( 4 \right) \\
{\text{ }} \\
$
Now from equation (2) and (4) it is clear that for the main equation the L.H.S = R.H.S $ = {a^{{m^2} + {n^2} + {l^2} + lm + mn + nl}}$
$\therefore {x^m}{y^n}{z^l} = {x^n}{y^l}{z^m}$
Hence proved
Note: - In these types of questions the key concept is that if the base is the same and all the terms are a product, then the powers of the bases will add up, then we can simplify L.H.S and R.H.S separately using this property to obtain the required answer.
We have to prove ${x^m}{y^n}{z^l} = {x^n}{y^l}{z^m}$
Let’s take L.H.S which is ${x^m}{y^n}{z^l}..........\left( 1 \right)$
It is given that $x = {a^{m + n}},y = {a^{n + l}},z = {a^{l + m}}$
So, substitute these values in expression (1)
$
\Rightarrow {x^m}{y^n}{z^l} = {a^{\left( {m + n} \right)}}^m{a^{\left( {n + l} \right)n}}{a^{\left( {l + m} \right)l}} \\
{\text{ }} = {a^{{m^2} + nm}}{a^{{n^2} + nl}}{a^{{l^2} + ml}} \\
$
In the R.H.S. of the above equation, the base is the same that is $a$ and it is a product, hence the powers will add up.
$
\Rightarrow {x^m}{y^n}{z^l} = {a^{{m^2} + nm}}{a^{{n^2} + nl}}{a^{{l^2} + ml}} \\
{\text{ }} = {a^{{m^2} + {n^2} + {l^2} + lm + mn + nl}}.................\left( 2 \right) \\
{\text{ }} \\
$
Now let’s take R.H.S of the equation we have to prove, which is ${x^n}{y^l}{z^m}...........\left( 3 \right)$
It is given that $x = {a^{m + n}},y = {a^{n + l}},z = {a^{l + m}}$
So, substitute these values in expression (3)
$
\Rightarrow {x^n}{y^l}{z^m} = {a^{\left( {m + n} \right)}}^n{a^{\left( {n + l} \right)l}}{a^{\left( {l + m} \right)m}} \\
{\text{ }} = {a^{{n^2} + nm}}{a^{{l^2} + nl}}{a^{{m^2} + ml}} \\
$
In the R.H.S. of the above equation, the base is the same that is $a$ and it is a product, hence the powers will add up.
$
\Rightarrow {x^n}{y^l}{z^m} = {a^{{n^2} + nm}}{a^{{l^2} + nl}}{a^{{m^2} + ml}} \\
{\text{ }} = {a^{{m^2} + {n^2} + {l^2} + lm + mn + nl}}.................\left( 4 \right) \\
{\text{ }} \\
$
Now from equation (2) and (4) it is clear that for the main equation the L.H.S = R.H.S $ = {a^{{m^2} + {n^2} + {l^2} + lm + mn + nl}}$
$\therefore {x^m}{y^n}{z^l} = {x^n}{y^l}{z^m}$
Hence proved
Note: - In these types of questions the key concept is that if the base is the same and all the terms are a product, then the powers of the bases will add up, then we can simplify L.H.S and R.H.S separately using this property to obtain the required answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


