Answer
Verified
498.3k+ views
Hint: First find the value of \[\dfrac{{dx}}{{d\theta }}\] and \[\dfrac{{dy}}{{d\theta }}\], then divide them to get \[\dfrac{{dy}}{{dx}}\]. Simplify the answer to express it in terms of x and y.
Complete step-by-step answer:
Let us start solving by finding the expression for \[\dfrac{{dx}}{{d\theta }}\].
\[\dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\sin ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \dfrac{d}{{d\theta }}(\sin \theta )\]
We know that \[\dfrac{d}{{dx}}(\sin x) = \cos x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \cos \theta .............(1)\]
Now, let us find the expression for \[\dfrac{{dy}}{{d\theta }}\].
\[\dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\cos ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\cos ^2}\theta \dfrac{d}{{d\theta }}(\cos \theta )\]
We know that \[\dfrac{d}{{dx}}(\cos x) = - \sin x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = - 3a{\cos ^2}\theta \sin \theta ............(2)\]
We know that,
\[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}}...........(3)\]
Using equation (1) and equation (2) in equation (3), we have:
\[\dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}\theta \cos \theta }}{{ - 3a{{\cos }^2}\theta \sin \theta }}\]
Cancelling common terms in the numerator and the denominator we have:
\[\dfrac{{dy}}{{dx}} = - \dfrac{{\sin \theta }}{{\cos \theta }}\]
We know that \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \], hence we have:
\[\dfrac{{dy}}{{dx}} = - \tan \theta ..........(4)\]
We can write equation (4) in terms of x and y.
Let us find the value of \[\dfrac{x}{y}\].
\[\dfrac{x}{y} = \dfrac{{a{{\sin }^3}\theta }}{{a{{\cos }^3}\theta }}\]
Simplifying, we get:
\[\dfrac{x}{y} = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}\]
\[\dfrac{x}{y} = {\tan ^3}\theta \]
Let us compute \[\tan \theta \] in terms of x and y by taking the cube root on both sides.
\[\tan \theta = \sqrt[3]{{\dfrac{x}{y}}}.........(5)\]
Substituting equation (5) in equation (4), we get:
\[\dfrac{{dy}}{{dx}} = - \sqrt[3]{{\dfrac{x}{y}}}\]
Hence, the answer is \[ - \sqrt[3]{{\dfrac{x}{y}}}\].
Note: If you express the final answer in terms of \[\theta \], it is a wrong answer. Express the final answer in terms of x and y only.
Complete step-by-step answer:
Let us start solving by finding the expression for \[\dfrac{{dx}}{{d\theta }}\].
\[\dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\sin ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \dfrac{d}{{d\theta }}(\sin \theta )\]
We know that \[\dfrac{d}{{dx}}(\sin x) = \cos x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \cos \theta .............(1)\]
Now, let us find the expression for \[\dfrac{{dy}}{{d\theta }}\].
\[\dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\cos ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\cos ^2}\theta \dfrac{d}{{d\theta }}(\cos \theta )\]
We know that \[\dfrac{d}{{dx}}(\cos x) = - \sin x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = - 3a{\cos ^2}\theta \sin \theta ............(2)\]
We know that,
\[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}}...........(3)\]
Using equation (1) and equation (2) in equation (3), we have:
\[\dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}\theta \cos \theta }}{{ - 3a{{\cos }^2}\theta \sin \theta }}\]
Cancelling common terms in the numerator and the denominator we have:
\[\dfrac{{dy}}{{dx}} = - \dfrac{{\sin \theta }}{{\cos \theta }}\]
We know that \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \], hence we have:
\[\dfrac{{dy}}{{dx}} = - \tan \theta ..........(4)\]
We can write equation (4) in terms of x and y.
Let us find the value of \[\dfrac{x}{y}\].
\[\dfrac{x}{y} = \dfrac{{a{{\sin }^3}\theta }}{{a{{\cos }^3}\theta }}\]
Simplifying, we get:
\[\dfrac{x}{y} = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}\]
\[\dfrac{x}{y} = {\tan ^3}\theta \]
Let us compute \[\tan \theta \] in terms of x and y by taking the cube root on both sides.
\[\tan \theta = \sqrt[3]{{\dfrac{x}{y}}}.........(5)\]
Substituting equation (5) in equation (4), we get:
\[\dfrac{{dy}}{{dx}} = - \sqrt[3]{{\dfrac{x}{y}}}\]
Hence, the answer is \[ - \sqrt[3]{{\dfrac{x}{y}}}\].
Note: If you express the final answer in terms of \[\theta \], it is a wrong answer. Express the final answer in terms of x and y only.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE