Answer
Verified
501k+ views
Hint:- Use expansions of \[{\left( {1 + x} \right)^{ - n}}\] and \[{{\text{e}}^x}\].
As we know the expansion of \[{{\text{e}}^x}\] is,
\[ \Rightarrow {e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + ........ + \dfrac{{{x^n}}}{{n!}}\] (1)
From equation 1. We can say that,
\[ \Rightarrow {{\text{e}}^x} > 1 + x\]
Now, taking log both sides of the above equation. It becomes,
\[ \Rightarrow \log {e^x} > \log (1 + x)\] (2)
Solving above equation. It becomes,
\[ \Rightarrow 1 + x = {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}}\] (3)
As we know the expansion of \[{(1 + y)^{ - 1}}\].
\[ \Rightarrow {(1 + y)^{ - 1}} = 1 - y + {y^2} - {y^3} + .......{\text{ }}\] (4)
Now, putting the value of \[{\text{y = }}\left( { - \dfrac{x}{{1 + x}}} \right)\] in equation 4. We get,
\[ \Rightarrow {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}} = 1 + \dfrac{x}{{1 + x}} + {\left( {\dfrac{x}{{1 + x}}} \right)^2} + .....\] (5)
And now putting the value of \[x = \dfrac{x}{{1 + x}}\] in equation 1. We get,
\[ \Rightarrow {e^{\dfrac{x}{{1 + x}}}} = 1 + \dfrac{x}{{1 + x}} + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^2}}}{{2!}} + ........ + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^n}}}{{n!}}\] (6)
From equation 3, 5 and 6. We can say that,
\[ \Rightarrow 1 + x > {e^{\dfrac{x}{{1 + x}}}}\]
Taking log both sides of the above equation. We get,
\[ \Rightarrow \log (1 + x) > \log {e^{\dfrac{x}{{1 + x}}}}\]
As we know that, \[\log (e) = 1\].
So, we can write above equation as,
\[ \Rightarrow \log (1 + x) > \dfrac{x}{{1 + x}}\] (7)
Therefore, from equation 2 and 7. We can say that,
\[ \Rightarrow x > \log (1 + x) > \dfrac{x}{{1 + x}}\]
Hence Proved.
Note:- Whenever we came up with this type of problem where log is
Involved, then we should use the expansion of \[{{\text{e}}^x}\], \[{\left( {1 + x} \right)^n},{\left( {1 + x} \right)^{ - n}}\] and
\[\log (1 + x)\] and then try to manipulate their expansions to get the required
result. As this will be the easiest and efficient way to prove the result.
As we know the expansion of \[{{\text{e}}^x}\] is,
\[ \Rightarrow {e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + ........ + \dfrac{{{x^n}}}{{n!}}\] (1)
From equation 1. We can say that,
\[ \Rightarrow {{\text{e}}^x} > 1 + x\]
Now, taking log both sides of the above equation. It becomes,
\[ \Rightarrow \log {e^x} > \log (1 + x)\] (2)
Solving above equation. It becomes,
\[ \Rightarrow 1 + x = {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}}\] (3)
As we know the expansion of \[{(1 + y)^{ - 1}}\].
\[ \Rightarrow {(1 + y)^{ - 1}} = 1 - y + {y^2} - {y^3} + .......{\text{ }}\] (4)
Now, putting the value of \[{\text{y = }}\left( { - \dfrac{x}{{1 + x}}} \right)\] in equation 4. We get,
\[ \Rightarrow {\left( {1 - \dfrac{x}{{1 + x}}} \right)^{ - 1}} = 1 + \dfrac{x}{{1 + x}} + {\left( {\dfrac{x}{{1 + x}}} \right)^2} + .....\] (5)
And now putting the value of \[x = \dfrac{x}{{1 + x}}\] in equation 1. We get,
\[ \Rightarrow {e^{\dfrac{x}{{1 + x}}}} = 1 + \dfrac{x}{{1 + x}} + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^2}}}{{2!}} + ........ + \dfrac{{{{\left( {\dfrac{x}{{1 + x}}} \right)}^n}}}{{n!}}\] (6)
From equation 3, 5 and 6. We can say that,
\[ \Rightarrow 1 + x > {e^{\dfrac{x}{{1 + x}}}}\]
Taking log both sides of the above equation. We get,
\[ \Rightarrow \log (1 + x) > \log {e^{\dfrac{x}{{1 + x}}}}\]
As we know that, \[\log (e) = 1\].
So, we can write above equation as,
\[ \Rightarrow \log (1 + x) > \dfrac{x}{{1 + x}}\] (7)
Therefore, from equation 2 and 7. We can say that,
\[ \Rightarrow x > \log (1 + x) > \dfrac{x}{{1 + x}}\]
Hence Proved.
Note:- Whenever we came up with this type of problem where log is
Involved, then we should use the expansion of \[{{\text{e}}^x}\], \[{\left( {1 + x} \right)^n},{\left( {1 + x} \right)^{ - n}}\] and
\[\log (1 + x)\] and then try to manipulate their expansions to get the required
result. As this will be the easiest and efficient way to prove the result.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE