Answer
Verified
432.9k+ views
Hint: Here in this question it is given that $x$ is real and also given an equation in $x$ and you have to prove that range of $x$ is between $ - \dfrac{1}{{11}}$ and $1$. In order to do so, you have to make a quadratic equation by considering it equal to another variable and then apply the discriminant conditions for having real roots.
Complete step by step solution:It is the question that is given an equation in $x$.
Let us consider $\dfrac{x}{{{x^2} - 5x + 9}} = y$
Now on cross multiplication, we get
$ \Rightarrow x = y{x^2} - (5y)x + 9y$
On making the above equation a quadratic in terms of $x$, we get
$y{x^2} - (1 + 5y)x + 9y = 0$ ……….(i)
Here in the question, it is also given that the $x$ is real.
Now according to the question, this quadratic equation must have real roots. In doing so, the discriminant for this quadratic equation must be greater than or equal to zero.
Discriminant must be $ \geqslant 0$
$\therefore {b^2} - 4ac \geqslant 0$ ……….(ii)
In order to find $a,b{\text{ and }}c$, compare equation (i) with the standard quadratic equation $a{x^2} + bx + c = 0$
On comparing, we get
$a = y$ , $b = - (1 + 5y)$ and $c = 9y$
Now putting all that values in equation (ii), we get
${( - 1 - 5y)^2} - 4 \times y \times 9y \geqslant 0$
$ \Rightarrow 1 + 25{y^2} + 10y - 36{y^2} \geqslant 0$
On further solving, we get
$ \Rightarrow 1 + 10y - 11{y^2} \geqslant 0$
Now, solving this equation using factorisation method
$ \Rightarrow 1 - y + 11y - 11{y^2} \geqslant 0$
On further making factors, we get
$ \Rightarrow (1 - y)(11{y^2} + 1) \geqslant 0$
Now on taking minus sign common, the inequality symbol gets reversed
$ \Rightarrow (11y + 1)(y - 1) \leqslant 0$
On solving this, we get range as
$y \in \left[ { - \dfrac{1}{{11}},1} \right]$
Hence, it is proved that the $\dfrac{x}{{{x^2} - 5x + 9}}$ lies between $ - \dfrac{1}{{11}}$ and $1$
Note:
The discriminant is the part of the quadratic formula underneath the square root symbol ${b^2} - 4ac$ . The discriminant tells us whether there are two solutions, one solution, or no solutions.
The discriminant can be positive, zero, or negative, and this determines how many solutions there are to the given quadratic equation.
-A positive discriminant indicates that the quadratic has two distinct real number solutions.
-A discriminant of zero indicates that the quadratic has a repeated real number solution.
-A negative discriminant indicates that neither of the solutions is real numbers.
Complete step by step solution:It is the question that is given an equation in $x$.
Let us consider $\dfrac{x}{{{x^2} - 5x + 9}} = y$
Now on cross multiplication, we get
$ \Rightarrow x = y{x^2} - (5y)x + 9y$
On making the above equation a quadratic in terms of $x$, we get
$y{x^2} - (1 + 5y)x + 9y = 0$ ……….(i)
Here in the question, it is also given that the $x$ is real.
Now according to the question, this quadratic equation must have real roots. In doing so, the discriminant for this quadratic equation must be greater than or equal to zero.
Discriminant must be $ \geqslant 0$
$\therefore {b^2} - 4ac \geqslant 0$ ……….(ii)
In order to find $a,b{\text{ and }}c$, compare equation (i) with the standard quadratic equation $a{x^2} + bx + c = 0$
On comparing, we get
$a = y$ , $b = - (1 + 5y)$ and $c = 9y$
Now putting all that values in equation (ii), we get
${( - 1 - 5y)^2} - 4 \times y \times 9y \geqslant 0$
$ \Rightarrow 1 + 25{y^2} + 10y - 36{y^2} \geqslant 0$
On further solving, we get
$ \Rightarrow 1 + 10y - 11{y^2} \geqslant 0$
Now, solving this equation using factorisation method
$ \Rightarrow 1 - y + 11y - 11{y^2} \geqslant 0$
On further making factors, we get
$ \Rightarrow (1 - y)(11{y^2} + 1) \geqslant 0$
Now on taking minus sign common, the inequality symbol gets reversed
$ \Rightarrow (11y + 1)(y - 1) \leqslant 0$
On solving this, we get range as
$y \in \left[ { - \dfrac{1}{{11}},1} \right]$
Hence, it is proved that the $\dfrac{x}{{{x^2} - 5x + 9}}$ lies between $ - \dfrac{1}{{11}}$ and $1$
Note:
The discriminant is the part of the quadratic formula underneath the square root symbol ${b^2} - 4ac$ . The discriminant tells us whether there are two solutions, one solution, or no solutions.
The discriminant can be positive, zero, or negative, and this determines how many solutions there are to the given quadratic equation.
-A positive discriminant indicates that the quadratic has two distinct real number solutions.
-A discriminant of zero indicates that the quadratic has a repeated real number solution.
-A negative discriminant indicates that neither of the solutions is real numbers.
Recently Updated Pages
300 ml of a gas at 27C is cooled to 3 C at constant class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
The major organic compound formed by the reaction of class 11 chemistry JEE_Main
1bromo3chlorocyclobutane when treated with two equivalents class 11 chem sec 1 JEE_Main
Which of the following oxide will produce hydrogen class 11 chem sec 1 NEET_UG
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE