Answer
Verified
497.1k+ views
Hint: Evaluate the sum ${{x}^{2}}+{{y}^{2}}$ first. Then add it to ${{z}^{2}}$ to get the result. Use the trigonometric identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
Complete step-by-step answer:
Complete step-by-step answer:
We have x = r sinA cosC
Squaring both sides, we get
${{x}^{2}}={{(r\sin A\cos C)}^{2}}$
We know that ${{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}$
Using the above formula, we get
\[{{x}^{2}}={{r}^{2}}{{\sin }^{2}}A{{\cos }^{2}}C\text{ (i)}\]
y= r sinA sinC
Squaring both sides, we get
${{y}^{2}}={{\left( r\sin A\sin C \right)}^{2}}$
We know that ${{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}$
Using the above formula, we get
\[{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A{{\sin }^{2}}C\text{ (ii)}\]
Adding equation (i) and equation (ii), we get
${{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A{{\cos }^{2}}C+{{r}^{2}}{{\sin }^{2}}A{{\sin }^{2}}C$
Taking \[{{r}^{2}}{{\sin }^{2}}A\] common, we get
${{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A\left( {{\cos }^{2}}C+{{\sin }^{2}}C \right)$
We know that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
Using the above formula, we get
$ {{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A\left( 1 \right) $
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A\text{ (iii)} \\ $
Also, we know have z = r cosA
Squaring both sides, we get
${{z}^{2}}={{\left( r\cos A \right)}^{2}}$
We know that ${{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}$
Using the above formula, we get
${{z}^{2}}={{r}^{2}}{{\cos }^{2}}A\text{ (iv)}$
Adding equation (iii) and equation (iv), we get
${{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}{{\sin }^{2}}A+{{r}^{2}}{{\cos }^{2}}A$
Taking ${{r}^{2}}$ common in RHS, we get
${{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)$
We know that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
Using the above formula, we get
$ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}\left( 1 \right) $
$ \Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}} $
Hence proved.
Taking modulus on both sides we get
\[\left| \overrightarrow{v} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}\]
But magnitude of |v| = r.
Substituting the value of |v| we get
$r=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Squaring both sides, we get
$ {{r}^{2}}={{\left( \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}} \right)}^{2}} $
$ \Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}} $
Hence proved.
[2] Here x, y and z can be considered as the x-coordinate, y-coordinate and the z-coordinate of a point P and r as the distance of P from origin in 3-D plane.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE