
If \[x\] varies as the \[{m^{th}}\] power of \[y\], \[y\] varies as the \[{n^{th}}\] power of \[z\] and \[x\] varies as the \[{p^{th}}\] power of \[z\], then which one of the following is correct?
A. \[p = m + n\]
B. \[p = m - n\]
C. \[p = mn\]
D. None of the above
Answer
493.2k+ views
Hint: In this question, we will proceed by writing the given data and converting them to the desired way. Then substitute the terms in each other to form a relation between \[p,m,n\] to get the required answer. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given that \[x\] varies as the \[{m^{th}}\] power of \[y\] i.e., \[y = {x^{\dfrac{1}{m}}} \Rightarrow x = {y^m}\]
And \[y\] varies as the \[{n^{th}}\] power of \[z\] i.e., \[z = {y^{\dfrac{1}{n}}} \Rightarrow y = {z^n}\]
\[
\Rightarrow y = {z^n} \\
\Rightarrow x = {\left( {{y^m}} \right)^n}{\text{ }}\left[ {\because x = {y^m}} \right] \\
\Rightarrow x = {z^{mn}}.................................\left( 1 \right) \\
\]
Also given that and \[x\] varies as the \[{p^{th}}\] power of \[z\]i.e., \[z = {x^{\dfrac{1}{p}}} \Rightarrow x = {z^p}.........................\left( 2 \right)\]
From equation (1) and (2), we have
\[ \Rightarrow {x^{mn}} = {x^p}\]
Since, the bases are equal we can equate the powers on both sides
\[
\Rightarrow mn = p \\
\therefore p = mn \\
\]
Thus, the correct option is C. \[p = mn\]
Note: Here, if \[a\] varies as the \[{b^{th}}\] power of \[c\], then it can be written as \[a = {c^{\dfrac{1}{b}}} \Rightarrow c = {a^b}\]. Whenever we have equal bases on both sides, we can equate the powers of the terms on both sides i.e., if \[{x^m} = {x^n}\] then \[m = n\].
Complete step-by-step answer:
Given that \[x\] varies as the \[{m^{th}}\] power of \[y\] i.e., \[y = {x^{\dfrac{1}{m}}} \Rightarrow x = {y^m}\]
And \[y\] varies as the \[{n^{th}}\] power of \[z\] i.e., \[z = {y^{\dfrac{1}{n}}} \Rightarrow y = {z^n}\]
\[
\Rightarrow y = {z^n} \\
\Rightarrow x = {\left( {{y^m}} \right)^n}{\text{ }}\left[ {\because x = {y^m}} \right] \\
\Rightarrow x = {z^{mn}}.................................\left( 1 \right) \\
\]
Also given that and \[x\] varies as the \[{p^{th}}\] power of \[z\]i.e., \[z = {x^{\dfrac{1}{p}}} \Rightarrow x = {z^p}.........................\left( 2 \right)\]
From equation (1) and (2), we have
\[ \Rightarrow {x^{mn}} = {x^p}\]
Since, the bases are equal we can equate the powers on both sides
\[
\Rightarrow mn = p \\
\therefore p = mn \\
\]
Thus, the correct option is C. \[p = mn\]
Note: Here, if \[a\] varies as the \[{b^{th}}\] power of \[c\], then it can be written as \[a = {c^{\dfrac{1}{b}}} \Rightarrow c = {a^b}\]. Whenever we have equal bases on both sides, we can equate the powers of the terms on both sides i.e., if \[{x^m} = {x^n}\] then \[m = n\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
