Answer
Verified
468.6k+ views
Hint: In this problem, we will find the required value by using the law of exponents. We can write ${x^{m - n}}$ as ${x^{m - n}} = \dfrac{{{x^m}}}{{{x^n}}}$. This is called the law of exponents. After using the law of exponents, we will simplify the expression to get the required value.
Complete step by step solution: In this problem, it is given that $x,y,z$ are positive real numbers and $a,b,c$ are rational numbers. We need to find the value of $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}\; \cdots \cdots \left( 1 \right)$.
Now we are going to use the law of exponents in expression $\left( 1 \right)$. that is, we are going to use the law ${x^{m - n}} = \dfrac{{{x^m}}}{{{x^n}}}$ in that expression. Therefore, we get
$\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$
$ = \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^a}}} + \dfrac{{{x^c}}}{{{x^a}}}}} + \dfrac{1}{{1 + \dfrac{{{x^a}}}{{{x^b}}} + \dfrac{{{x^c}}}{{{x^b}}}}} + \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^c}}} + \dfrac{{{x^a}}}{{{x^c}}}}}$
Let us simplify the above expression by taking LCM (least common multiple). Therefore, we get $\dfrac{1}{{\dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^a}}}}} + \dfrac{1}{{\dfrac{{{x^b} + {x^a} + {x^c}}}{{{x^b}}}}} + \dfrac{1}{{\dfrac{{{x^c} + {x^b} + {x^a}}}{{{x^c}}}}}$
$ = \dfrac{{{x^a}}}{{{x^a} + {x^b} + {x^c}}} + \dfrac{{{x^b}}}{{{x^a} + {x^b} + {x^c}}} + \dfrac{{{x^c}}}{{{x^a} + {x^b} + {x^c}}}$
Let us rewrite the above expression by taking LCM. Therefore, we get
$\dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^a} + {x^b} + {x^c}}}$
On cancellation of the term ${x^a} + {x^b} + {x^c}$, we get the required value and it is $1$.
Therefore, if $x,y,z$ are positive real numbers and $a,b,c$ are rational numbers, then the value of $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$ is equal to $1$.
Therefore, option C is correct.
Note: A rational number is of the form $\dfrac{p}{q}$ where $p$ and $q$ are integers. Note that here $q$ is non-zero. In this type of problem, laws of exponents are very useful to find the required value. In some problems, we can use the law ${x^{m + n}} = {x^m} \times {x^n}$. In some problems, we can use the law ${\left( {{x^m}} \right)^n} = {x^{m\; \times \;n}}$. These are called laws of exponents. In the term ${x^m}$, we can say that $x$ is the base and $m$ is the exponent. Exponent is also known as power or index. Exponent of any number says how many times we need to multiply that number. For example, in the term ${2^8}$, exponent is $8$. So, we can say that we need to multiply the number $2$ itself $8$ times to find the value of ${2^8}$.
Complete step by step solution: In this problem, it is given that $x,y,z$ are positive real numbers and $a,b,c$ are rational numbers. We need to find the value of $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}\; \cdots \cdots \left( 1 \right)$.
Now we are going to use the law of exponents in expression $\left( 1 \right)$. that is, we are going to use the law ${x^{m - n}} = \dfrac{{{x^m}}}{{{x^n}}}$ in that expression. Therefore, we get
$\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$
$ = \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^a}}} + \dfrac{{{x^c}}}{{{x^a}}}}} + \dfrac{1}{{1 + \dfrac{{{x^a}}}{{{x^b}}} + \dfrac{{{x^c}}}{{{x^b}}}}} + \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^c}}} + \dfrac{{{x^a}}}{{{x^c}}}}}$
Let us simplify the above expression by taking LCM (least common multiple). Therefore, we get $\dfrac{1}{{\dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^a}}}}} + \dfrac{1}{{\dfrac{{{x^b} + {x^a} + {x^c}}}{{{x^b}}}}} + \dfrac{1}{{\dfrac{{{x^c} + {x^b} + {x^a}}}{{{x^c}}}}}$
$ = \dfrac{{{x^a}}}{{{x^a} + {x^b} + {x^c}}} + \dfrac{{{x^b}}}{{{x^a} + {x^b} + {x^c}}} + \dfrac{{{x^c}}}{{{x^a} + {x^b} + {x^c}}}$
Let us rewrite the above expression by taking LCM. Therefore, we get
$\dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^a} + {x^b} + {x^c}}}$
On cancellation of the term ${x^a} + {x^b} + {x^c}$, we get the required value and it is $1$.
Therefore, if $x,y,z$ are positive real numbers and $a,b,c$ are rational numbers, then the value of $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$ is equal to $1$.
Therefore, option C is correct.
Note: A rational number is of the form $\dfrac{p}{q}$ where $p$ and $q$ are integers. Note that here $q$ is non-zero. In this type of problem, laws of exponents are very useful to find the required value. In some problems, we can use the law ${x^{m + n}} = {x^m} \times {x^n}$. In some problems, we can use the law ${\left( {{x^m}} \right)^n} = {x^{m\; \times \;n}}$. These are called laws of exponents. In the term ${x^m}$, we can say that $x$ is the base and $m$ is the exponent. Exponent is also known as power or index. Exponent of any number says how many times we need to multiply that number. For example, in the term ${2^8}$, exponent is $8$. So, we can say that we need to multiply the number $2$ itself $8$ times to find the value of ${2^8}$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE