
If $x=1+2i$ then prove that ${{x}^{3}}+7{{x}^{2}}-13x+16=-29$.
Answer
522.3k+ views
Hint: It is given that $x=1+2i$. Using this, find out ${{x}^{2}}$ and ${{x}^{3}}$ and then substitute
$x,{{x}^{2}},{{x}^{3}}$ in the equation which we have to prove in the question.
In the question, we are given a complex number $x=1+2i$. We have to prove that the expression ${{x}^{3}}+7{{x}^{2}}-13x+16$ is equal to $-29$.
In the expression ${{x}^{3}}+7{{x}^{2}}-13x+16$, we can see that ${{x}^{2}}$ and ${{x}^{3}}$ are present. So, we have to find both ${{x}^{2}}$ and ${{x}^{3}}$.
In the question, it is given $x=1+2i$.
Squaring both the sides of the above equation, we can find ${{x}^{2}}$ as,
${{x}^{2}}={{\left( 1+2i \right)}^{2}}$
We have a formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Using this formula to find ${{x}^{2}}$, we get,
$\begin{align}
& {{x}^{2}}={{\left( 1 \right)}^{2}}+{{\left( 2i \right)}^{2}}+2\left( 1 \right)\left( 2i \right) \\
& \Rightarrow {{x}^{2}}=1+4{{i}^{2}}+4i \\
\end{align}$
In complex numbers, we have a formula ${{i}^{2}}=-1$.
Substituting ${{i}^{2}}=-1$in the above equation, we get,
\[\begin{align}
& {{x}^{2}}=1-4+4i \\
& \Rightarrow {{x}^{2}}=-3+4i...............\left( 1 \right) \\
\end{align}\]
To find ${{x}^{3}}$, we will multiply the above equation with $x=1+2i$.
\[\begin{align}
& {{x}^{2}}.x=\left( -3+4i \right)\left( 1+2i \right) \\
& \Rightarrow {{x}^{3}}=-3-6i+4i+8{{i}^{2}} \\
& \Rightarrow {{x}^{3}}=-3-2i+8{{i}^{2}} \\
\end{align}\]
Substituting ${{i}^{2}}=-1$in the above equation, we get,
\[\begin{align}
& {{x}^{3}}=-3-2i-8 \\
& \Rightarrow {{x}^{3}}=-11-2i..........\left( 2 \right) \\
\end{align}\]
Since in the question we have to prove ${{x}^{3}}+7{{x}^{2}}-13x+16=-29$, substituting ${{x}^{2}}$
from equation $\left( 1 \right)$ and ${{x}^{3}}$ from equation $\left( 2 \right)$ in
${{x}^{3}}+7{{x}^{2}}-13x+16$, we get,
\[\begin{align}
& -11-2i+7\left( -3+4i \right)-13\left( 1+2i \right)+16 \\
& \Rightarrow -11-2i-21+28i-13-26i+16 \\
& \Rightarrow -29 \\
\end{align}\]
Hence, we have proved that ${{x}^{3}}+7{{x}^{2}}-13x+16=-29$.
Note: One can also do this question by converting the complex number $x=1+2i$ to the Euler’s form i.e. in the form of $r{{e}^{i\theta }}$ or $r\left( \cos \theta +i\sin \theta \right)$ where $r$ is the modulus of the complex number and $\theta $ is the argument of the complex number. Then using the De Moivre’s theorem i.e. ${{\left( r{{e}^{i\theta }} \right)}^{n}}=\cos n\theta +i\sin n\theta $, one can find ${{x}^{2}}$ and ${{x}^{3}}$ and substituting $x,{{x}^{2}},{{x}^{3}}$ in the expression ${{x}^{3}}+7{{x}^{2}}-13x+16$. But this method will take a lot of time since the argument of the complex number is not a standard angle. So, one has to write $\sin 2\theta ,\sin 3\theta ,\cos 2\theta ,\cos 3\theta $ in terms of $\sin \theta $ and $\cos \theta $ using the trigonometric formulas. Then, one has to simplify all the terms to get the answer.
$x,{{x}^{2}},{{x}^{3}}$ in the equation which we have to prove in the question.
In the question, we are given a complex number $x=1+2i$. We have to prove that the expression ${{x}^{3}}+7{{x}^{2}}-13x+16$ is equal to $-29$.
In the expression ${{x}^{3}}+7{{x}^{2}}-13x+16$, we can see that ${{x}^{2}}$ and ${{x}^{3}}$ are present. So, we have to find both ${{x}^{2}}$ and ${{x}^{3}}$.
In the question, it is given $x=1+2i$.
Squaring both the sides of the above equation, we can find ${{x}^{2}}$ as,
${{x}^{2}}={{\left( 1+2i \right)}^{2}}$
We have a formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Using this formula to find ${{x}^{2}}$, we get,
$\begin{align}
& {{x}^{2}}={{\left( 1 \right)}^{2}}+{{\left( 2i \right)}^{2}}+2\left( 1 \right)\left( 2i \right) \\
& \Rightarrow {{x}^{2}}=1+4{{i}^{2}}+4i \\
\end{align}$
In complex numbers, we have a formula ${{i}^{2}}=-1$.
Substituting ${{i}^{2}}=-1$in the above equation, we get,
\[\begin{align}
& {{x}^{2}}=1-4+4i \\
& \Rightarrow {{x}^{2}}=-3+4i...............\left( 1 \right) \\
\end{align}\]
To find ${{x}^{3}}$, we will multiply the above equation with $x=1+2i$.
\[\begin{align}
& {{x}^{2}}.x=\left( -3+4i \right)\left( 1+2i \right) \\
& \Rightarrow {{x}^{3}}=-3-6i+4i+8{{i}^{2}} \\
& \Rightarrow {{x}^{3}}=-3-2i+8{{i}^{2}} \\
\end{align}\]
Substituting ${{i}^{2}}=-1$in the above equation, we get,
\[\begin{align}
& {{x}^{3}}=-3-2i-8 \\
& \Rightarrow {{x}^{3}}=-11-2i..........\left( 2 \right) \\
\end{align}\]
Since in the question we have to prove ${{x}^{3}}+7{{x}^{2}}-13x+16=-29$, substituting ${{x}^{2}}$
from equation $\left( 1 \right)$ and ${{x}^{3}}$ from equation $\left( 2 \right)$ in
${{x}^{3}}+7{{x}^{2}}-13x+16$, we get,
\[\begin{align}
& -11-2i+7\left( -3+4i \right)-13\left( 1+2i \right)+16 \\
& \Rightarrow -11-2i-21+28i-13-26i+16 \\
& \Rightarrow -29 \\
\end{align}\]
Hence, we have proved that ${{x}^{3}}+7{{x}^{2}}-13x+16=-29$.
Note: One can also do this question by converting the complex number $x=1+2i$ to the Euler’s form i.e. in the form of $r{{e}^{i\theta }}$ or $r\left( \cos \theta +i\sin \theta \right)$ where $r$ is the modulus of the complex number and $\theta $ is the argument of the complex number. Then using the De Moivre’s theorem i.e. ${{\left( r{{e}^{i\theta }} \right)}^{n}}=\cos n\theta +i\sin n\theta $, one can find ${{x}^{2}}$ and ${{x}^{3}}$ and substituting $x,{{x}^{2}},{{x}^{3}}$ in the expression ${{x}^{3}}+7{{x}^{2}}-13x+16$. But this method will take a lot of time since the argument of the complex number is not a standard angle. So, one has to write $\sin 2\theta ,\sin 3\theta ,\cos 2\theta ,\cos 3\theta $ in terms of $\sin \theta $ and $\cos \theta $ using the trigonometric formulas. Then, one has to simplify all the terms to get the answer.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE
