Answer
Verified
397.5k+ views
Hint: First we have to define what the terms we need to solve the problem are.
These questions are based on the concept of the logarithm. A log function is defined as $ f(x) = {\log _b}x $ where log base is b since base e and \[10\] are commonly used and also the division term log is bottom to top of the multiplication.
Complete step by step answer:
Since the given question is of multiplication on \[x\] and \[y\] terms so we separate the x terms on left hand side and then separate the right-hand side in the right-hand side so that we simply apply the log formula and find the value;
Thus, $ {x^{2a - 3}}{y^{2a}} = {x^{6 - a}}{y^{5a}} \Rightarrow \dfrac{{{x^{2a - 3}}}}{{{x^{6 - a}}}} = \dfrac{{{y^{5a}}}}{{{y^{2a}}}} $ which is we separated the same terms on same side;
Now turn the denominator into numerator which yields using the property of division $ {x^{2a - 3}}{y^{2a}} = {x^{6 - a}}{y^{5a}} \Rightarrow \dfrac{{{x^{2a - 3}}}}{{{x^{6 - a}}}} = \dfrac{{{y^{5a}}}}{{{y^{2a}}}} \Rightarrow {x^{2a - 3 - (6 - a)}} = {y^{5a - 2a}} $ (turning the division terms as multiplication)
Now we going to apply the logarithm functions on both sides we get
$ {x^{2a - 3 - (6 - a)}} = {y^{5a - 2a}} \Rightarrow 2a - 3 - (6 - a) \times \log x = (5a - 2a) \times \log y $ (On turning the log, the power part will become to the multiplication by the property of the log)
Hence further solving we get and also $ 2a - 3 - (6 - a) \times \log x = (5a - 2a) \times \log y \Rightarrow (3a - 9)\log x = (5a - 2a) \times \log y $
Thus, after simplifying we get $ \log \dfrac{x}{y} = \dfrac{3}{a}\log x $ since we are going to cross multiply the left- and right-hand side; $ \log \dfrac{x}{y} = \dfrac{3}{a}\log x \Rightarrow a\log \dfrac{x}{y} = 3\log x $ which is the required equation for the logarithm function.
So, the correct answer is “Option A”.
Note: $ \log {x^a} = a\log x $ and $ \dfrac{{{x^2}}}{{{x^1}}} = {x^{2 - 1}} = {x^1} $ (Turning the division terms as multiplication) these are some properties of logarithm that we used for this particular given problem, and for separate variable like \[x\] and \[y\] .
These questions are based on the concept of the logarithm. A log function is defined as $ f(x) = {\log _b}x $ where log base is b since base e and \[10\] are commonly used and also the division term log is bottom to top of the multiplication.
Complete step by step answer:
Since the given question is of multiplication on \[x\] and \[y\] terms so we separate the x terms on left hand side and then separate the right-hand side in the right-hand side so that we simply apply the log formula and find the value;
Thus, $ {x^{2a - 3}}{y^{2a}} = {x^{6 - a}}{y^{5a}} \Rightarrow \dfrac{{{x^{2a - 3}}}}{{{x^{6 - a}}}} = \dfrac{{{y^{5a}}}}{{{y^{2a}}}} $ which is we separated the same terms on same side;
Now turn the denominator into numerator which yields using the property of division $ {x^{2a - 3}}{y^{2a}} = {x^{6 - a}}{y^{5a}} \Rightarrow \dfrac{{{x^{2a - 3}}}}{{{x^{6 - a}}}} = \dfrac{{{y^{5a}}}}{{{y^{2a}}}} \Rightarrow {x^{2a - 3 - (6 - a)}} = {y^{5a - 2a}} $ (turning the division terms as multiplication)
Now we going to apply the logarithm functions on both sides we get
$ {x^{2a - 3 - (6 - a)}} = {y^{5a - 2a}} \Rightarrow 2a - 3 - (6 - a) \times \log x = (5a - 2a) \times \log y $ (On turning the log, the power part will become to the multiplication by the property of the log)
Hence further solving we get and also $ 2a - 3 - (6 - a) \times \log x = (5a - 2a) \times \log y \Rightarrow (3a - 9)\log x = (5a - 2a) \times \log y $
Thus, after simplifying we get $ \log \dfrac{x}{y} = \dfrac{3}{a}\log x $ since we are going to cross multiply the left- and right-hand side; $ \log \dfrac{x}{y} = \dfrac{3}{a}\log x \Rightarrow a\log \dfrac{x}{y} = 3\log x $ which is the required equation for the logarithm function.
So, the correct answer is “Option A”.
Note: $ \log {x^a} = a\log x $ and $ \dfrac{{{x^2}}}{{{x^1}}} = {x^{2 - 1}} = {x^1} $ (Turning the division terms as multiplication) these are some properties of logarithm that we used for this particular given problem, and for separate variable like \[x\] and \[y\] .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE