Answer
Verified
470.7k+ views
Hint: Firstly, try to find the conic represented by the given function by simplifying the equations using mathematical identities and get an equation in terms of x and y.
Then convert the equations into a standard form of any conic section (i.e. ellipse, parabola, or hyperbola).
Circle: $ {{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}} $
Parabola: \[\left\{ \begin{align}
& y=\dfrac{{{\left( x-h \right)}^{2}}}{4a}+k \\
& x=\dfrac{{{\left( y-k \right)}^{2}}}{4a}+h \\
\end{align} \right\}\]
Ellipse: \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\]
Hyperbola: \[\left\{ \begin{align}
& \text{for a b : }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\
& \text{for a b : }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1 \\
\end{align} \right\}\]\[\left\{ \begin{align}
& \text{for a b : }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\
& \text{for a b : }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1 \\
\end{align} \right\}\]
After getting the equation of the conic section, find the foci for the required conic section.
Complete step-by-step answer:
Consider the given functions:
\[\begin{align}
& x=2\left( \cos \text{t}-\sin \text{t} \right)......(1) \\
& y=3\left( \cos \text{t}+\sin \text{t} \right)......(2) \\
\end{align}\]
Squaring the both sides of equation (1) & (2),
By applying the identities:\[\left[ \begin{align}
& \because {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \because {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align} \right]\]\[\left[ \begin{align}
& \because {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \because {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align} \right]\]
we get:
\[\begin{align}
& {{x}^{2}}=4\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right)......(3) \\
& {{y}^{2}}=9\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right)......(4) \\
\end{align}\]
We can also write above equations as:
\[\begin{align}
& \dfrac{{{x}^{2}}}{4}=\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right)......(5) \\
& \dfrac{{{y}^{2}}}{9}=\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right)......(4) \\
\end{align}\]
Add both the equations (5) & (6), we get:
\[\begin{align}
& \dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right) \\
& +\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right) \\
& ={{\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t} \right)}^{2}}.......(7)
\end{align}\]
Since \[\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t} \right)=1\], equation (7) becomes:
\[\dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=2......(8)\]
Equation (8) can also be written as: \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1......(9)\]
Compare equation (8) with the standard form of various conic sections.
We get to know that equation (8) represents ellipse whose standard form of equation is \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\]
Hence, \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1\] is an ellipse, where h=k=0; a= $ \sqrt{8} $ and b= $ \sqrt{18} $ .
Since a < b, the major axis of ellipse is parallel to the y-axis.
The ellipse represented by equation (8) is shown with the help of a diagram below. Here BD is the major axis and AC is the minor axis.
The foci of the ellipse lies on the major axis which is the y-axis itself. Those are represented by E $ \left( 0,be \right) $ and F $ \left( 0,-be \right) $ where ‘e’ is the eccentricity of the ellipse.
Now to find the foci of the ellipse, we need to calculate the eccentricity (e) of the ellipse.
i.e. for ellipse \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\];
If a < b, then $ e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}} $ $ e=\sqrt{1-\dfrac{{{a}^{2}}}{{{b}^{2}}}} $
If a > b, then $ e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}} $
Therefore, eccentricity of the given ellipse \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1\] is \[e=\sqrt{1-\dfrac{8}{18}}\]
\[e=\sqrt{\dfrac{10}{18}}\]
\[e=\sqrt{\dfrac{2\times 5}{2\times 9}}\]
\[e=\dfrac{\sqrt{5}}{3}\]
So focii of given ellipse are \[\left( 0,\sqrt{18}\times \dfrac{\sqrt{5}}{3} \right)\] and \[\left( 0,-\sqrt{18}\times \dfrac{\sqrt{5}}{3} \right)\]
i.e. \[(0,+\sqrt{10})\]and \[(0,-\sqrt{10})\]
So, the correct answer is “Option D”.
Note: Be careful while identifying the major axis of ellipse while considering the values of a and b because it might change the value of eccentricity and therefore foci would lie parallel to the x-axis in another case (i.e. a > b).
Suppose we subtract the square of both the equations instead of adding them to simplify and get an equation in terms of x and y.
Then convert the equations into a standard form of any conic section (i.e. ellipse, parabola, or hyperbola).
Circle: $ {{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}} $
Parabola: \[\left\{ \begin{align}
& y=\dfrac{{{\left( x-h \right)}^{2}}}{4a}+k \\
& x=\dfrac{{{\left( y-k \right)}^{2}}}{4a}+h \\
\end{align} \right\}\]
Ellipse: \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\]
Hyperbola: \[\left\{ \begin{align}
& \text{for a b : }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\
& \text{for a b : }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1 \\
\end{align} \right\}\]\[\left\{ \begin{align}
& \text{for a b : }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\
& \text{for a b : }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1 \\
\end{align} \right\}\]
After getting the equation of the conic section, find the foci for the required conic section.
Complete step-by-step answer:
Consider the given functions:
\[\begin{align}
& x=2\left( \cos \text{t}-\sin \text{t} \right)......(1) \\
& y=3\left( \cos \text{t}+\sin \text{t} \right)......(2) \\
\end{align}\]
Squaring the both sides of equation (1) & (2),
By applying the identities:\[\left[ \begin{align}
& \because {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \because {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align} \right]\]\[\left[ \begin{align}
& \because {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \because {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align} \right]\]
we get:
\[\begin{align}
& {{x}^{2}}=4\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right)......(3) \\
& {{y}^{2}}=9\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right)......(4) \\
\end{align}\]
We can also write above equations as:
\[\begin{align}
& \dfrac{{{x}^{2}}}{4}=\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right)......(5) \\
& \dfrac{{{y}^{2}}}{9}=\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right)......(4) \\
\end{align}\]
Add both the equations (5) & (6), we get:
\[\begin{align}
& \dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t}-2\sin \text{t}\text{.}\cos \text{t} \right) \\
& +\left( {{\cos }^{2}}\text{t}+{{\sin }^{2}}\text{t }+\text{ }2\sin \text{t}\text{.}\cos \text{t} \right) \\
& ={{\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t} \right)}^{2}}.......(7)
\end{align}\]
Since \[\left( {{\cos }^{2}}\text{t +}{{\sin }^{2}}\text{t} \right)=1\], equation (7) becomes:
\[\dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=2......(8)\]
Equation (8) can also be written as: \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1......(9)\]
Compare equation (8) with the standard form of various conic sections.
We get to know that equation (8) represents ellipse whose standard form of equation is \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\]
Hence, \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1\] is an ellipse, where h=k=0; a= $ \sqrt{8} $ and b= $ \sqrt{18} $ .
Since a < b, the major axis of ellipse is parallel to the y-axis.
The ellipse represented by equation (8) is shown with the help of a diagram below. Here BD is the major axis and AC is the minor axis.
The foci of the ellipse lies on the major axis which is the y-axis itself. Those are represented by E $ \left( 0,be \right) $ and F $ \left( 0,-be \right) $ where ‘e’ is the eccentricity of the ellipse.
Now to find the foci of the ellipse, we need to calculate the eccentricity (e) of the ellipse.
i.e. for ellipse \[\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1\];
If a < b, then $ e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}} $ $ e=\sqrt{1-\dfrac{{{a}^{2}}}{{{b}^{2}}}} $
If a > b, then $ e=\sqrt{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}} $
Therefore, eccentricity of the given ellipse \[\dfrac{{{x}^{2}}}{8}+\dfrac{{{y}^{2}}}{18}=1\] is \[e=\sqrt{1-\dfrac{8}{18}}\]
\[e=\sqrt{\dfrac{10}{18}}\]
\[e=\sqrt{\dfrac{2\times 5}{2\times 9}}\]
\[e=\dfrac{\sqrt{5}}{3}\]
So focii of given ellipse are \[\left( 0,\sqrt{18}\times \dfrac{\sqrt{5}}{3} \right)\] and \[\left( 0,-\sqrt{18}\times \dfrac{\sqrt{5}}{3} \right)\]
i.e. \[(0,+\sqrt{10})\]and \[(0,-\sqrt{10})\]
So, the correct answer is “Option D”.
Note: Be careful while identifying the major axis of ellipse while considering the values of a and b because it might change the value of eccentricity and therefore foci would lie parallel to the x-axis in another case (i.e. a > b).
Suppose we subtract the square of both the equations instead of adding them to simplify and get an equation in terms of x and y.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE