
If ${x^3}{y^5} = {\left( {x + y} \right)^8}$, then show that $\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Answer
583.5k+ views
Hint: In this question, we will proceed by differentiating on both sides w.r.t ‘\[x\]’ by using the product rule of differentiation. Then simplify further by grouping and cancelling the common terms to prove the given equation.
Complete step-by-step answer:
Let the given equation be ${x^3}{y^5} = {\left( {x + y} \right)^8}............................................\left( 1 \right)$
Differentiating equation (1) w.r.t ‘$x$’ on both sides, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^3}{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
By product rule we have \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. So, using product rule we have
\[ \Rightarrow {y^5}\dfrac{d}{{dx}}\left( {{x^3}} \right) + {x^5}\dfrac{d}{{dx}}\left( {{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
We know that \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]. By using this formula, we have
\[
\Rightarrow {y^5}\left( {3{x^2}} \right) + {x^3}\left( {5{y^4}\dfrac{{dy}}{{dx}}} \right) = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( {x + y} \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( y \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {1 + \dfrac{{dy}}{{dx}}} \right] \\
\]
Simplifying further, we have
\[
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} + 8{\left( {x + y} \right)^7}\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {5{x^3}{y^4} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3{x^2}{y^5}.................................................\left( 2 \right) \\
\]
From equation (1) we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^3}{y^4} = \dfrac{{{{\left( {x + y} \right)}^8}}}{y}..........................................\left( 3 \right) \\
\]
Also, from equation (1), we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^2}{y^5} = \dfrac{{{{\left( {x + y} \right)}^8}}}{x}..........................................\left( 4 \right) \\
\]
Substituting equation (3) and (4) in equation (2), we have
\[ \Rightarrow \left( {5\dfrac{{{{\left( {x + y} \right)}^8}}}{y} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3\dfrac{{{{\left( {x + y} \right)}^8}}}{x}\]
Grouping and cancelling the common terms, we have
\[
\Rightarrow {\left( {x + y} \right)^7}\left( {5\dfrac{{\left( {x + y} \right)}}{y} - 8} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {8 - 3\dfrac{{\left( {x + y} \right)}}{x}} \right] \\
\Rightarrow {\left( {x + y} \right)^7}\left( {\dfrac{{5x + 5y - 8y}}{y}} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {\dfrac{{8x - 3x - 3y}}{x}} \right] \\
\Rightarrow \left( {\dfrac{{5x - 3y}}{y}} \right)\dfrac{{dy}}{{dx}} = \left[ {\dfrac{{5x - 3y}}{x}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{5x - 3y}}{x} \times \dfrac{y}{{5x - 3y}} \\
\therefore \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Hence proved.
Note: Product rule of differentiation states the if the functions \[f\left( x \right)\] and \[g\left( y \right)\] are differentiable then \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. In these types of questions, try to solve the differentiation in a simpler way by not expanding the powers of the variables.
Complete step-by-step answer:
Let the given equation be ${x^3}{y^5} = {\left( {x + y} \right)^8}............................................\left( 1 \right)$
Differentiating equation (1) w.r.t ‘$x$’ on both sides, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^3}{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
By product rule we have \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. So, using product rule we have
\[ \Rightarrow {y^5}\dfrac{d}{{dx}}\left( {{x^3}} \right) + {x^5}\dfrac{d}{{dx}}\left( {{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
We know that \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]. By using this formula, we have
\[
\Rightarrow {y^5}\left( {3{x^2}} \right) + {x^3}\left( {5{y^4}\dfrac{{dy}}{{dx}}} \right) = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( {x + y} \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( y \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {1 + \dfrac{{dy}}{{dx}}} \right] \\
\]
Simplifying further, we have
\[
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} + 8{\left( {x + y} \right)^7}\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {5{x^3}{y^4} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3{x^2}{y^5}.................................................\left( 2 \right) \\
\]
From equation (1) we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^3}{y^4} = \dfrac{{{{\left( {x + y} \right)}^8}}}{y}..........................................\left( 3 \right) \\
\]
Also, from equation (1), we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^2}{y^5} = \dfrac{{{{\left( {x + y} \right)}^8}}}{x}..........................................\left( 4 \right) \\
\]
Substituting equation (3) and (4) in equation (2), we have
\[ \Rightarrow \left( {5\dfrac{{{{\left( {x + y} \right)}^8}}}{y} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3\dfrac{{{{\left( {x + y} \right)}^8}}}{x}\]
Grouping and cancelling the common terms, we have
\[
\Rightarrow {\left( {x + y} \right)^7}\left( {5\dfrac{{\left( {x + y} \right)}}{y} - 8} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {8 - 3\dfrac{{\left( {x + y} \right)}}{x}} \right] \\
\Rightarrow {\left( {x + y} \right)^7}\left( {\dfrac{{5x + 5y - 8y}}{y}} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {\dfrac{{8x - 3x - 3y}}{x}} \right] \\
\Rightarrow \left( {\dfrac{{5x - 3y}}{y}} \right)\dfrac{{dy}}{{dx}} = \left[ {\dfrac{{5x - 3y}}{x}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{5x - 3y}}{x} \times \dfrac{y}{{5x - 3y}} \\
\therefore \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Hence proved.
Note: Product rule of differentiation states the if the functions \[f\left( x \right)\] and \[g\left( y \right)\] are differentiable then \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. In these types of questions, try to solve the differentiation in a simpler way by not expanding the powers of the variables.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

