Answer
Verified
498.3k+ views
Hint: We can solve the given set of equations just by simply substituting the values of $x,\text{ }y$and $z$in $xyz$. Since the solution of $xyz$ is independent of \[\omega \], thus we have to keep that point in mind to use the property of the complex cube root of unity.
Complete step-by-step answer:
Here, we have $x=p+q,\text{ }y=p\omega +q{{\omega }^{2}}$ and $z=p{{\omega }^{2}}+q\omega $, where \[\omega \] is a complex cube root of unity.
And we have to find the value of $xyz$, thus by substituting the values of $x,\text{ }y$and $z$in it, we get
\[\begin{align}
& =xyz \\
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
\end{align}\]
Multiplying each value inside brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
& =\left( p+q \right)\left( p\omega \left( p{{\omega }^{2}}+q\omega \right)+q{{\omega }^{2}}\left( p{{\omega }^{2}}+q\omega \right) \right) \\
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Now, rearranging the similar terms together in the above equation, we get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Taking out the common terms from each of the brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right)...\text{ }\left( 1 \right) \\
\end{align}\]
Now, we need to remove $\omega $ and for that, we have to use the properties of the complex cube root of unity, i.e.,
$1+\omega +{{\omega }^{2}}=0$ and ${{\omega }^{3}}=1$
Also, \[{{\omega }^{4}}={{\omega }^{3}}\cdot \omega =1\cdot \omega =\omega \]
Thus, substituting these values in equation (1), we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+\omega \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
\end{align}\]
And,
$\begin{align}
& \Rightarrow 1+\omega +{{\omega }^{2}}=0 \\
& \Rightarrow \omega +{{\omega }^{2}}=-1 \\
\end{align}$
Thus, substituting this as well, we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( -1 \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( -pq+{{p}^{2}}+{{q}^{2}} \right) \\
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
\end{align}\]
By multiplying these terms, we finally get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& =p\left( {{p}^{2}}+{{q}^{2}}-pq \right)+q\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& ={{p}^{3}}+p{{q}^{2}}-{{p}^{2}}q+q{{p}^{2}}+{{q}^{3}}-p{{q}^{2}} \\
& ={{p}^{3}}+{{q}^{3}} \\
\end{align}\]
Hence, $xyz={{p}^{3}}+{{q}^{3}}$.
Note: One thing to avoid here is direct multiplication of all the terms together after substituting the values of $x,\text{ }y\text{ and }z$, as that might lead to an error. Because of complex multiplications, it is advised to first multiply the terms consisting of $\omega $ only to eliminate confusion, by using properties of the complex cube root of unity.
Complete step-by-step answer:
Here, we have $x=p+q,\text{ }y=p\omega +q{{\omega }^{2}}$ and $z=p{{\omega }^{2}}+q\omega $, where \[\omega \] is a complex cube root of unity.
And we have to find the value of $xyz$, thus by substituting the values of $x,\text{ }y$and $z$in it, we get
\[\begin{align}
& =xyz \\
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
\end{align}\]
Multiplying each value inside brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
& =\left( p+q \right)\left( p\omega \left( p{{\omega }^{2}}+q\omega \right)+q{{\omega }^{2}}\left( p{{\omega }^{2}}+q\omega \right) \right) \\
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Now, rearranging the similar terms together in the above equation, we get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Taking out the common terms from each of the brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right)...\text{ }\left( 1 \right) \\
\end{align}\]
Now, we need to remove $\omega $ and for that, we have to use the properties of the complex cube root of unity, i.e.,
$1+\omega +{{\omega }^{2}}=0$ and ${{\omega }^{3}}=1$
Also, \[{{\omega }^{4}}={{\omega }^{3}}\cdot \omega =1\cdot \omega =\omega \]
Thus, substituting these values in equation (1), we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+\omega \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
\end{align}\]
And,
$\begin{align}
& \Rightarrow 1+\omega +{{\omega }^{2}}=0 \\
& \Rightarrow \omega +{{\omega }^{2}}=-1 \\
\end{align}$
Thus, substituting this as well, we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( -1 \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( -pq+{{p}^{2}}+{{q}^{2}} \right) \\
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
\end{align}\]
By multiplying these terms, we finally get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& =p\left( {{p}^{2}}+{{q}^{2}}-pq \right)+q\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& ={{p}^{3}}+p{{q}^{2}}-{{p}^{2}}q+q{{p}^{2}}+{{q}^{3}}-p{{q}^{2}} \\
& ={{p}^{3}}+{{q}^{3}} \\
\end{align}\]
Hence, $xyz={{p}^{3}}+{{q}^{3}}$.
Note: One thing to avoid here is direct multiplication of all the terms together after substituting the values of $x,\text{ }y\text{ and }z$, as that might lead to an error. Because of complex multiplications, it is advised to first multiply the terms consisting of $\omega $ only to eliminate confusion, by using properties of the complex cube root of unity.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE