Answer
Verified
498.9k+ views
Hint – In order to solve this problem put the value of x in the given equation and solve to find the value of y. Then put the value of y in which x is present then solve for x. Doing this will make your problem solved.
Complete step-by-step answer:
The given equations are :
$ \to {{\text{x}}^{\text{y}}}{\text{ = }}{{\text{y}}^{\text{x}}}$ ……(1)
x = 2y ……(2)
Taking log both sides in equation (1) we get,
$ \to {\text{log}}{{\text{x}}^{\text{y}}}{\text{ = log}}{{\text{y}}^{\text{x}}}$
Solving it further we get,
$
\because \log {a^b} = a\log b \\
\to {\text{ylogx = xlogy}} \\
\to \dfrac{{{\text{logx}}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{logy}}}}{{\text{y}}} \\
$
On putting the value of x from (1) in the above equation we will get the new equation as
$ \to \dfrac{{{\text{log2y}}}}{{{\text{2y}}}}{\text{ = }}\dfrac{{{\text{logy}}}}{{\text{y}}}$
Simplifying the above equation we get,
$ \to {\text{log2y = 2logy}}$
$ \to {\text{log2y - 2logy = 0}}$
As we know ${\text{logab = loga}}\,{\text{ + logb}}$applying the same in above equation we get,
$
\to {\text{log2 + logy - 2logy = 0}} \\
\to {\text{log2 - logy = 0}} \\
\to {\text{logy = log2}} \\
\to {\text{y = 2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{(}}\because {\text{loga = logb}} \to {\text{a = b}}) \\
$
On putting the value of y in equation (2) we will get the value of x as,
$ \to $x = 2(2)
$ \to $x = 4
Hence the value of y is 2 and that of x is 4.
So, the correct option is (A).
Note – Whenever you face this type of problem then try to use the concepts of logarithms it will make your problem a bit easier to solve. Here we have taken log and solved the equation using properties of log to reach the right answer.
Complete step-by-step answer:
The given equations are :
$ \to {{\text{x}}^{\text{y}}}{\text{ = }}{{\text{y}}^{\text{x}}}$ ……(1)
x = 2y ……(2)
Taking log both sides in equation (1) we get,
$ \to {\text{log}}{{\text{x}}^{\text{y}}}{\text{ = log}}{{\text{y}}^{\text{x}}}$
Solving it further we get,
$
\because \log {a^b} = a\log b \\
\to {\text{ylogx = xlogy}} \\
\to \dfrac{{{\text{logx}}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{logy}}}}{{\text{y}}} \\
$
On putting the value of x from (1) in the above equation we will get the new equation as
$ \to \dfrac{{{\text{log2y}}}}{{{\text{2y}}}}{\text{ = }}\dfrac{{{\text{logy}}}}{{\text{y}}}$
Simplifying the above equation we get,
$ \to {\text{log2y = 2logy}}$
$ \to {\text{log2y - 2logy = 0}}$
As we know ${\text{logab = loga}}\,{\text{ + logb}}$applying the same in above equation we get,
$
\to {\text{log2 + logy - 2logy = 0}} \\
\to {\text{log2 - logy = 0}} \\
\to {\text{logy = log2}} \\
\to {\text{y = 2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{(}}\because {\text{loga = logb}} \to {\text{a = b}}) \\
$
On putting the value of y in equation (2) we will get the value of x as,
$ \to $x = 2(2)
$ \to $x = 4
Hence the value of y is 2 and that of x is 4.
So, the correct option is (A).
Note – Whenever you face this type of problem then try to use the concepts of logarithms it will make your problem a bit easier to solve. Here we have taken log and solved the equation using properties of log to reach the right answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE